國立成功大學 108 學年度碩士班招生考試試題

系 所:材料科學及工程學系

考試科目:材料科學

第1頁,共5頁

考試日期:0223,節次:3

※ 考生請注意:本試題可使用語							
材料科學共 50 題選擇題,每題答對得 2 分,答錯倒扣 0.5 分;滿分 100 分,倒扣至 0 分為止。							
1. For FCC crystals, it would be mu	1. For FCC crystals, it would be much easier for the dynamic recovery to occur with						
(a) small stacking fault energy	(b) dis	locations to do cross-sli	р				
(c) high surface energy	(d) sm	all dislocation density					
2. In grain growth, the relationship	between the size of the gr	ain(D) and time(t) is tha	t D is proportional to				
(a) $t^{-0.5}$ (b) t^{4}	(c) t ⁻¹	(d) t					
3. For a cold-worked metal, which	of the following parameters	s is not sensitive to the i	recrystallized grain size				
(a) annealing temperature (b)	purity of the metal (c) init	ial grain size (d) amou	unt of deformation				
4. Secondary recrystallization resul	ts from						
(a) surface energy (b) th	ne strain energy of cold wor	k (c) recovery	(d) nucleation				
5. Which of the following factors ha	is less impact on the recrys	tallization of a cold wor	ked metal?				
(a) temperature (b) strain o	r degree of cold work	c) composition (d)	the original grain size				
6. Freezing can happen without cha	inge in composition or tem	perature at points that a	are called				
(a) eutectoid (b) eut	ectic (c) congr	uent (d) perit	tectic points				
	•						
7. A reaction between a solid and a	liquid that leads to the for	nation of a new and dif	ferent solid phase is				
Called							
(a) peritectic (b) eutecti	(c) monotectic	(d) peritectoid	transformation				
0.141.1 5.1 5.1 .							
8. Which of the following statemen							
(a) conductivity (b) tensile	ductility (c) tensile def	ormation resistance	(d) formability				
0.1411.1.51.51							
9. Which of the following statement							
(a) dendritic spacing (b) ingot	center (c) rolling stru	cture (d) reci	rystallization				
40 14/11 51 51							
10. Which of the following statemen							
(a) dislocations (b) stress	concentration (c) solid	fication (d) he	at-treatment				
11 \\/\big of the fellows							
11. Which of the following statemer							
strength of an oversaturated sol	id solution aluminum alloy	pertaining to artificial a	ging				

(a) diffusional phenomenon (b) GP zone (c) strain induced phenomenon (d) precipitation hardening

國立成功大學 108 學年度碩士班招生考試試題

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0223,節次:3

第	2	百	,	共	5	百
~1	_	~		\sim	_	~

12	. Which of the following s	tatement is support abou	ut the problem of DBTT	
	(a) superplasticity	(b) tensile strength	(c) tensile ductility	(d) formability
13.	Which of the following s			
	(a) precipitation free zon	e (b) precipitation focus	zone (c) prestrain free zo	one (d) penetration free zone
14.	Which of the following st	tatement about GP zone	is correct ?	
	(a) increasing strength	(b) decreasing strength	(c) causing brittleness	s (d) increasing conductivity
15.	Mechanical twins (Defor		· · · · · · · · · · · · · · · · · · ·	
	(a) Ni	(b) Cu	(c) Al	(d) Mg
16.	How to distinguish "Twin			
	(a) hardness of tempered	l (b) composition	(c) coherent strain	(d) resistivity
17	Characteristics of diffusion	onless transformation:		
17.	(a) coherent structure	(b) 2D surface relief	(c) bamboo leaf structu	re (d) amorphous material
18.	T-T-T Diagrams, why the	low-temperature transfo	ormation time is short?	
	(a) down hill	(b) coherent interface	(c) large strain	(d) large driving force
19.	In a hexagonal close-pac		angle between two dire	ction of [-1 -1 2 0] and
	[-1 2 -1 0] on basal plane		•	
	(a)30°	(b) 45°	(c) 60°	(d) 120°
20.	An x-ray diffraction patter and (4 0 0). What is the p	•	eals the miller indices of	(2 0 0), (2 2 0), (2 2 2), (3 1 0)
		(b) silver	(c) gold	(d) cobalt
	What is the c/a ratio of the	•		4.00
	(a) Cobalt	(b) zirconium	(c) magnesium	(d) zinc
22.	Predict one of the follow	ing elements having a co	mplete solubility in alum	ninum.
	(a) Manganese	(b) silicon	(c) copper	(d) zinc
23.	Which one has the larges	st activation energy of se	lf-diffusion?	•
	(a) Nickel	(b) copper	(c) aluminum	(d) molybdenum

編號	:	95

國立成功大學 108 學年度碩士班招生考試試題

系	所	:	材料科學及工程學系
---	---	---	-----------

考試科目:材料科學

考試日期:0223,節次:3

第3頁,共5頁			
24. Which one of defec	ts is dominated in the self-c	liffusion?	***************************************
(a) Dislocation	(b) vacancy	(c) grain boundary	(d)phase boundary
25. Which one is the co	rrect statement?		
(a) Increasing the ca fcc-Fe.	rbon concentration results	in decreasing the diffusion	on coefficient D for carbon in
(b) Single crystal tur temperature.	bine blades are more creep	resistant that polycrysta	lline turbine blades at high
(c) The diffusion coe	efficient D for carbon in fcc-I	Fe is larger than that in bo	cc-Fe.
	efficient D through the lattic	_	
26. In general, the diffe about:	rence in atomic radii of a bi	nary alloy with substitution	onal solid solution is less than
(a) ±5%	(b) ±10%	(c) ±15%	(d) ±20%
27. A covalent compour	nds with the exact ratio of c	ations to anions as predic	cted by the chemical formula is
(a) tetragonal	(b) octahedral	(c) neutrality	(d) stoichiometry
28. One type of the defe	ect involves a cation-vacanc	y and cation-iterstitial is	called a
(a) Frenkel defect	(b) Schottky defect	(c) stacking fault	(d) twin plane
	formations, the fraction of to the control of the c		
(a) Fick's 2 nd Law	(b) Kirkendall effect	(c) Avrami equation	(d) Darken's equation
30. Which of the followi	ng transformations does no	ot involve diffusion:	
(a) precipitation tran	sformation	(b) martensitic trans	sformation
(c) liquid to solid trar	nsformation	(d) eutectoid transf	ormation
31. For diffusion-control	led grain growth behavior,	which of the followings b	est described the grain growth
of high purity metal	(where D is the diameter of	the precipitate and t is t	he time):
(a) D ³ ~ t	(b) D ² ~ t	(c) D ~ t	(d) $D^{1/2} \sim t$
•		·	(a _c) greater than 1. What kind
of reaction may take	place on the steel surface a	at high temperature?	

(c) nitridation

(d) carburization

(b) sulfication

(a) oxygenation

國立成功大學 108 學年度碩士班招生考試試題

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0223,節次:3

笙	4	百	,	共	5	百

33.	. The extent and magnitud	e of anisotropic effect	s in crystalline materials	are functions of ?
	(a) structural symmetry	(b) atomic numbe	r (c) Miller indices	(d) Energy level
34.	What is the atomic packir	ng number of FCC?	÷	
	(a) 0.68	(b) 0.56	(c) 0.78	(d) 0.74
35.	What is the definition of I	inear density (LD)?		
	(a) the radius of atoms pe	r unit length (b) the number of atoms p	er unit length
	(c) the number of atoms p	er unit area (d	d) the weight of atoms p	er unit volume
36.	What kind of structure wi	th the atomic coordina	ates of (0, 0, 0) and (1/2,	, 1/2, 1/2)?
	(a) FCC	(b) HCP	(c) BCC	(d) SC
37.	For Hexagonal crystals, the	ne conversion from th	ne three-index system to	o the four-index system is based
	on, $[u'v'w'] \rightarrow [uvtw]$. Def	ine t.		
	(a) –(<i>u+v</i>)	(b) -(<i>u'+v'</i>)	(c) w'	(d) <i>u'+v'</i>
38.	What is the definition of p	lanar density (PD)?		
	(a) the number of atoms p	er unit volume that ar	e centered on a plane	•
	(b) the density of atoms			
	(c) the volume of atoms th	at are centered on a p	olane	
	(d) the number of atoms p	er unit area that are c	entered on a plane	
39.	The diffractometer is used	to determine the	_ at which diffraction oc	curs for powdered specimens.
	(a) crystals	(b) angles	(c) diameters	(d) none of them
40.	Which of the following me	thods are commonly	used to produce long ler	ngths of metal sheet?
((a) cold rolling		(b) hot rolling	,
((c) hot rolling followed by	cold rolling	(d) hot rolling followe	ed by extrusion
11.	The yield strength is chose	en when	•	
. ((a) 0.1%	(b) 0.2%	(c) 0.3%	(d) 0.4%
l	olastic strain has taken pla	ce.		
12.	The ultimate tensile stren	gth is the maximum st	rength reached in the er	ngineering stress-strain curve.
•	The more engineering stre	ess decrease before fra	acture indicates this mat	erial has
(a) high ductility	(b) high creep	(c) high elasticity	(d) high hardness

國立成功大學 108 學年度碩士班招生考試試題

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0223,節次:3

第5頁,共5頁

43. When a met	al is heavily cold worked, to incre	ase its ductility, metal nee	eds to be heated to a
temperature	that is		
(a) just belov	v its melting temperature		
(b) just above	e its melting temperature		
(c) just above	e the recrystallization temperatur	e range	
(d) just belov	v the recrystallization temperatur	e range	,
44 5 12 12 12 12			
	of a metal is usually determined		tress of a material that can
	der repeated load in the range of		
(a) 25-30% of	UTS (b) 50-70% of UTS	(c) 40-60% of YS	(d) 60-80% of YS
45. Which of the	following polymers are biodegra	dable?	
(a) PLA	(b) PGA	(c) Cellulos	(d) all of the above
	f the following is the eutectic read	ction? C_E is the eutectic co	mposition. L is the liquid phase.
(a) $L(C_E) \rightarrow \alpha$		(b) $L(C_E) \rightarrow \gamma(C_{\gamma E}) + L(C_{\gamma E})$	
(c) $L(C_E) \rightarrow \alpha($	$C_{\alpha E}$)	(d) $L(C_E) \rightarrow \beta(C_{\beta E}) + L$	_(C _E)
47. Which one of	the following phases is formed b	y diffusionless transforma	ation?
(a) Pearlite	(b) Martensite	(c) Bainite	(d) Austenite
48. What is the m	naterial most commonly used for	optical fiber?	
(a) Silica	(b) Carbon	(c) As	(d) Ge
,			(,
49. Which one of	the following can form the carbo	n nanotubes structure?	
(a) heptagon (carbon + hexagon carbon	(b) hexagon carbon	
(c) pentagon (carbon + heptagon carbon	(d) pentagon carbon	+ hexagon carbon
50 Which one of	following is Not a ceramic mater	Clei	
(a) Limestone		·	(d) Cormonium
(a) Limestone	(n) soud asii	(c) Alumina	(d) Germanium
•			