編號: 87

國立成功大學 108 學年度碩士班招生考試試題

系 所:資源工程學系

考試科目:物理化學 考試日期:0223,節次:3

第1頁,共1頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Please explain the following terminology in detail: (1)Virial coefficients; (2)Phase boundaries; (3)Kirchhoff's law; (4)Born interpretation; (5) Planck constant; (20%, each 4%)
- 2. What is the total random kinetic energy of all the molecules in 2 mole of hydrogen at a temperature of 400 K ?(5%)
- 3. For a binary liquid mixture A-B, choose the correct one: (5%)
 - (1) Both the molar volume of the solution and partial molar volume for each component are always positive.
 - (2) The molar volume of mixing is always zero.
 - (3) The Gibbs energy of the solution is always increased with increasing the temperature.
 - (4) The Gibbs energy of the solution is always increased with increasing the pressure.
 - (5) None is correct.
- 4. Given the following data; Calculate:
 - (1) the Equilibrium Constant of $H_{2(g)} + I_{2(s)} \rightarrow 2HI_{(g)}$ at T = 298K \circ (5%)
 - (2) the Equilibrium Constant of $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ at T = 298K \circ (5%)

	$\Delta_f G^{\circ} / kJ \text{ mol}^{-1}$	
H _{2(g)}	0	
HI _(g)	1.7	
N _{2(g)}	0	
NH _{3(g)}	-16.5	

5. Calculate the standard enthalpy of formation for N₂O₅: (10%)

$$2 \text{ NO}_{(g)} + O_{2(g)} \rightarrow 2 \text{ NO}_{2(g)}$$

$$\Delta_r H^\circ = -114.1$$
 kJ

$$4 \text{ NO}_{2(g)} + O_{2(g)} \rightarrow 2 \text{ N}_2O_{5(g)}$$

$$\Delta_r H^\circ = -110.2 \text{ kJ}$$

$$N_{2(g)} + O_{2(g)} \rightarrow 2 NO_{(g)}$$

$$\Delta_r H^{\circ} = +180.5 \text{ kJ}$$

6. Please estimate the temperature: (1) in decomposition of CaCO₃ (5%) (2) in dewatering of CuSO₄·5H₂O(5%)

T=298K	$\Delta_{\rm f} {\sf H}{}^{\circ}/$	$\Delta_{\mathrm{f}}\mathrm{G}\circ$ /	ΔS°/	C _{p,m} /
	kJ mol ⁻¹	kJ mol ⁻¹	JK ⁻¹ mol ⁻¹	JK ⁻¹ mol ⁻¹
CaCO _{3(s)}	-1206.9	-1128.8	92.9	81.88
CaO _(s)	-635.09	-604.03	39.75	42.80
CO _{2(g)}	-393.51	-394.36	213.74	37.11
CuSO _{4(s)}	-771.36	-661.8	109	100.0
CuSO ₄ ·5H ₂ O _(s)	-2279.7	-1979.7	300.4	280
H ₂ O _(g)	-241.82	-228.57	188.83	33.58

- 7. Draw the two graphs of V vs. T and of H vs. T that show the characteristic first-order phase transition and explain them (10%)
- 8. The ionic strength of a solution contains 0.02 mol/kg NaNO₃ and 0.08 mol/kg Mg(NO₃)₂? (10%)
- 9. The half-life of the first order reaction $2N_2O_5 \rightarrow 4NO_2+O_2$ is 7.3 hours at 25'C. Please calculate the rate coefficient for this reaction. {10%}
- 10. 3.0 mole of a perfect gas at 350K is expanded isothermally and reversibly from 3.0 atm to 1.0 atm . Determine the values of (a)q (b) w (c) ΔU (d) ΔH (e) ΔS (10%, each 2%)