編號: 38

國立成功大學 108 學年度碩士班招生考試試題

系 所:數學系應用數學

考試科目:線性代數

第1頁,共1頁

考試日期:0224,節次:1

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

In the following, $F^{m\times n}$ denotes the class of all $m\times n$ matrices with entries in the field F, where $F=\mathbb{R}$ or \mathbb{C} . Vectors in F^n will be regarded as column vectors. We say a matrix $A\in\mathbb{R}^{n\times n}$ is symmetry if $A^T=A$, a matrix $A\in\mathbb{C}^{n\times n}$ is skew-Hermitian if $A^*=-A$. A matrix $A\in\mathbb{R}^{n\times n}$ is positive definite if $x^TAx>0$ for all nonzero $x\in\mathbb{R}^n$.

- (1) Let $A \in \mathbb{R}^{2\times 2}$ and write $U = \{X \in \mathbb{R}^{2\times 2} : AX = XA\}$, show that dim $U \ge 2$. (20 points)
- (2) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and there exists an invertible matrix $R \in \mathbb{R}^{n \times n}$ such that $A = R^T R$, show that A is a positive definite matrix. (20 points)

(3) Let
$$A = \begin{bmatrix} a & b & c \\ p & q & r \\ u & v & w \end{bmatrix}$$
 and assume that $\det A = 3$.

a. Compute $det(-A^4)$ (10 points)

b. Compute
$$\det(2B^{-1})$$
, where $B = \begin{bmatrix} 2p & -a + u & 3u \\ 2q & -b + v & 3v \\ 2r & -c + w & 3w \end{bmatrix}$. (10 points)

- (4) Let $A \in \mathbb{C}^{n \times n}$ be a skew-Hermitian matrix.
- a. Show that all eigenvalues of A are purely imaginary. (10 points)
- b. If (λ_1, y_1) and (λ_2, y_2) are two eigenpairs of A with $\lambda_1 \neq \lambda_2$, show that $\langle y_1, y_2 \rangle = 0$. (10 points)
- (5) Assume that $A \in \mathbb{R}^{m \times n}$
- a. Let $x \in \mathbb{R}^n$, show that if $(A^T A)x = 0$, then Ax = 0. (10 points)
- b. Show that Rank $(A^T A) = \text{Rank } A$. (10 points)