編號: 189

國立成功大學 108 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁場與波

第1頁,共2頁

考試日期:0224,節次:2

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 1 (20 Points)

Two conducting spheres are both centered at the origin as shown.

Sphere 1 has the radius a and its potential is 1 volt. Sphere 2 has radius b (b>a) and is grounded (0 volt). Between the spheres is a medium with permittivity ε and conductivity σ . Please find

- (a) the electric flux density D at any r, a < r < b, and the total electric charges on Sphere 1, and
- (b) the electric current density J at any r, a < r < b, and the total electric currents flow out of Sphere 1.

Problem 2 (10 Points)

Please find the *inductance per meter* of a two-wire transmission line, with wire radius a, separation d, and the medium around has permeability μ as shown, assuming the currents are uniformly distributed on the surface of each conductor.

Problem 3 (20 Points)

An electromagnetic wave in free space has $\vec{H}(x,t) = (10\hat{a}_y - 20\hat{a}_z)\sin(\omega t - 40x)A/m$. Please find ω and \vec{E} .

編號: 189

國立成功大學 108 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁場與波

第2頁,共2頁

考試日期:0224,節次:2

Problem 4 (20 Points)

A transmission-line circuit is as shown. Line 1 is infinite long and its characteristic impedance is 50Ω . Line 2 is a quarter-wavelength long and its characteristic impedance is 80Ω . Line 3 is infinite long and its characteristic impedance is 100Ω . A continuous wave is sent from Line 1 to the right. Please find

- (a) the input impedance at Port 1,
- (b) the reflection coefficient at Port 1,
- (c) the voltage standing wave ratio on Line 2, and
- (d) the transmitted coefficient at Port 2.

Problem 5 (10 Points)

What are the *polarizations* (ex., *linear, circular, elliptic*, and *left-hand, right-hand*) of the following electromagnetic waves? (a) $\vec{E} = \left[\left(2 + j \right) \vec{a}_y + \left(2 - j \right) \vec{a}_z \right] e^{-jkx}$ and (b) $\vec{E} = \sin(\omega t - ky) \vec{a}_x - \cos(\omega t - ky) \vec{a}_z$.

Problem 6 (20 Points)

A metallic parallel-plate waveguide, in the air, with separation d=5cm, is as shown.

The propagating electromagnetic wave is 10 GHz and is operated as the TE₃ mode. Please find

- (a) the wave number β in the z-direction and phase velocity v_p in the z-direction, and
- (b) the wave impedance in the z-direction ($\equiv E_x/H_y$).

