編號: 187

國立成功大學 108 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目: 電磁學及電磁波

第1頁,共2頁

考試日期:0224, 節次:2

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

For your reference:

 $\varepsilon_0 = 10^{-9}/36\pi \, (F/m);$

 $\mu_0 = 4\pi \times 10^{-7} \, (H/m);$

 $\eta_0 = 120\pi (\Omega)$

Permittivity ε (= $\varepsilon_r \varepsilon_0$);

Permeability μ (= $\mu_r\mu_0$);

Conductivity o

1. Please calculate

- (a) The volume in cylindrical coordinates between r=2 m and r=3 m contains a uniform charge density ρ (C/m³), as shown in **Fig. A**. Use Gauss's law to find the electric flux density \vec{D} in all regions. [6%]
- (b) A spherical conducting shell of radius a, centered at the origin, has a potential field

$$V(r) = \begin{cases} V_0, & r \le a \\ V_0 \cdot \frac{a}{r}, & r > a \end{cases}$$

with the zero reference at infinity. Find the electric field \vec{E} anywhere and the stored electrostatic energy W_e in this system. [9%]

Fig. A

Fig. B

- 2. Find the total capacitance between the inner (r_i = 15 cm) and outer (r_o = 20 cm) curved metal surfaces as referred to the cylindrical coordinates and shown in **Fig. B**. The dielectric constants are ε_1 = 2.5 ε_0 and ε_2 = 4 ε_0 , respectively. Neglect the fringing field effect. [10%]
- 3. In free space, an electromagnetic plane wave propagates along the z-axis. The magnetic field is

$$\vec{H}(z,t) = \frac{0.4}{3} \cos(4 \times 10^7 t - \beta z) \hat{a}_y$$
 (A/m).

Find the electric field $\vec{E}(z,t)$, the phase constant β , and the wave length λ . [15%]

編號: 187

國立成功大學 108 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁學及電磁波

考試日期:0224,節次:2

第2頁,共2頁

4. As shown in **Fig. C**, a rectangular conducting loop with resistance $R = 0.2 \Omega$ rotates with 300 rpm. The vertical conductor at $r_1 = 0.03$ m is in a flux density $\vec{B}_1 = 0.25 \, \hat{a}_r$ (T), and the conductor at $r_2 = 0.05$ m is in $\vec{B}_2 = 0.8 \, \hat{a}_r$ (T). The vertical conductor length is 0.5 m. Find the induced current in the loop. [15%]

Fig. C

magnetic

- 5. A parallel-wire transmission line is constructed of #6 AWG copper wire (diameter = 0.162 in; σ_c = 5.8×10⁷ S/m) with a 12-inch separation in air. Neglect the internal inductance,
- (a) find the transmission line parameters of L, C, G, the dc resistance R_{dc} , and the ac resistance R_{ac} at 1 MHz; [10%] and
- (b) find the characteristic impedance, propagation constant, propagation velocity, and wavelength while the operation frequency is at 5 kHz. [10%]
- 6. A rectangular waveguide having dimensions of a = 3.484 cm and b = 1.58 cm is filled with a dielectric material (ϵ = 2.25 ϵ ₀; μ = μ ₀). The operation frequency is 4 GHz.
- (a) Find the phase constant β , the guided wavelength λ_g , the phase velocity v_p , the group velocity v_g , and the wave impedance Z of the dominant mode. [10%]
- (b) Compute the propagation constant when the operation frequency is 2 GHz. How much does the wave attenuate over the distance of 1 cm? [5%]
- 7. The radiation fields of a half-wave dipole antenna in phasor expression are given by

$$\vec{E}_{\theta} = j \eta_0 2I_0 \frac{e^{-jkr}}{4\pi r} \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta} \hat{a}_{\theta} \quad \text{and} \quad \vec{H}_{\phi} = \frac{\vec{E}_{\theta}}{\eta_0} \hat{a}_{\phi}$$

where I_0 is the current amplitude at the input port of the antenna. Calculate the radiation resistance and directivity of a half-wave dipole antenna. (Note: calculation is necessary.) [10%]