編號: 183

國立成功大學 108 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:離散數學

考試日期:0224,節次:3

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (10%) Suppose that each child born is equally likely to be a boy or a girl. Consider a family with exactly three children. Let BBG indicate that the first two children born are boys and the third child is a girl.
 - a. Define a sample space whose outcomes are all possible genders of the three children.
 - b. Write each of the following events as a set and find its probability.
 - i. The event that exactly one child is a girl.
 - ii. The event that at least two children are girls.
- 2. (10%) A student takes a Truth/False exam with 10 questions. The full marks for the test is 10 points. For a specific question, a student gets one point (+1) when the answer is correct and deducts one point (-1) when the answer is wrong. If the student does not write down the answer, he/she gets zero point (0) for that question. Calculate the expected score for the following two cases.
 - (a) Assume a student does not know the answer. He/she guesses an answer for each problem.
 - (b) Assume a student has 70% confident to the answer of a question. He/she fills an answer for each problem.
- 3. (10%) If A is late then B is late. If either A or B is late, then the class is boring. Suppose that the class is not boring. What can you conclude about A?
- 4. (20%) Design a circuit for both four-bit (x,y,z) odd parity generator and five-bit odd parity checker.
- 5. (15%) Draw the Hasse diagram for (P({1,2,3}), \subseteq), where P(S) denote the power set of S.
- 6. (15%) Please compute the time complexity of "Bubble Sort". Trace through the bubble sort algorithm for the following data set: x1 = 5; x2 = 4; x3 = 2; x4 = 1; x5 = 3.
- 7. (20%) Given a Merge() function (see the following figure). Please write a MergeSort() function. Please compute the complexity of "Merge Sort"

```
function Merge(y_1, y_2, \dots, y_l, z_1, z_2, \dots, z_m \in U)
i \leftarrow 1, j \leftarrow 1, k \leftarrow 1
while k \le l + m do
            ^{\Gamma} if i > l then
                     x_k \leftarrow z_i
                     L j \leftarrow j + 1
                else if j > m then
                                \ \ x_k \leftarrow y_i
                               Li \leftarrow i+1
                         else if y_i \leq z_i then
                                          x_k \leftarrow y_i 
                                        L i \leftarrow i + 1
                                   else
                                        \Gamma x_k \leftarrow z_i
                                        \downarrow j \leftarrow j+1
           k \leftarrow k+1
return x_1, x_2, \ldots, x_{l+m}
```