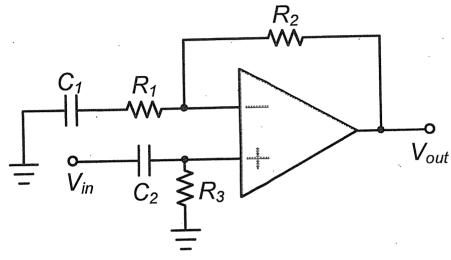
國立成功大學 108 學年度碩士班招生考試試題

編號: 179、198 所:電機工程學系、電機多和雙陷一做電、茶料節程


考試科目:電子學

第1頁,共4頁

考試日期:0223,節次:1

請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 ※ 考生請注意:本試題可使用計算機。

- 1. The circuit of Fig. 1 is used to create an ac-coupled noninverting amplifier with a gain of 100 V/V using resistor R_2 of 100 $k\Omega$.
 - (a) What values of R_1 and R_3 should be used ? (4%)
 - (b) For break frequency due to C_1 at 100 Hz, and that due to C_2 at 10 Hz, what values of C_1 and C_2 are needed ?(8%)

- Fig. 1.
- 2. Consider an operational rectifier as shown in Fig. 2 with R=1 $k\Omega$. Assume that the op amp is ideal and that its output saturates at ± 12 V. The diode has a 0.7-V drop at 1-mA current. Find the voltages (V_A and V_{O}) that result at the rectifier output (V_{O}) and at the opamp output (V_{A}) under the conditions:
 - (a) $V_i=10mV$ (4%)
 - (b) $V_i=1V$ (4%)
 - (c) $V_1 = -1V (4\%)$

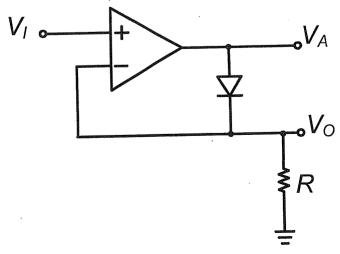
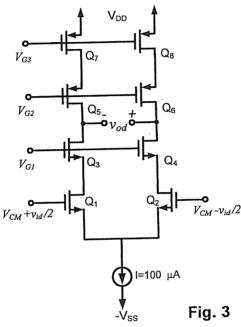


Fig. 2

編號: 179、198

國立成功大學 108 學年度碩士班招生考試試題


系所:電機工程學系、電機者或學問一個電、奈米聯邦

考試科目:電子學

考試日期:0223,節次:1

第2頁,共4頁

- 3. The CMOS cascade differential amplifier of Fig. 3 is fabricated in a 0.18- μ m technology for which $\mu_n C_{ox} = 4\mu_p C_{ox} = 400~\mu$ A/V², $|V_t| = 0.5$ V, and $|V_A| = 10~V/\mu$ m. Assume the bias current $|V_{ox}| = 100\mu$ A, and all transistors have a channel length twice the minimum length and are operating at $|V_{ox}| = |V_{GS} V_t| = 0.2$ V.
 - (a) Find W/L for each of Q_1 to Q_4 (4%)
 - (b) Find W/L for each of Q_5 to Q_8 (4%)
 - (c) Determine the differential voltage gain $A_d(=v_{od}/v_{id})$ (4%)

- 4. As shown in Fig. 4, all the MOS transistors in the feedback are sized to operate at $|V_{OV}| = |V_{GS} V_t| = 0.2 \text{ V}$. For all transistors, $|V_t| = 0.4 \text{V}$ and early voltage= $|V_A| = |1/\lambda| = 20 \text{V}$.
 - (a) Find the closed-loop gain of A_f (= I_o/V_s). (4%)
 - (b) Find the output impedance, R_{out} . (5%)
 - (c) If the voltage at the source of Q_S is taken as the output (V_o) , find the voltage gain (V_O/V_S) using the value of I_o/V_S obtained in (a). (5%)

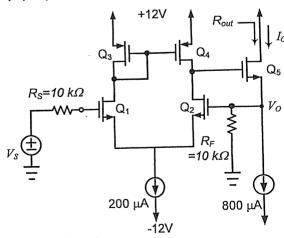
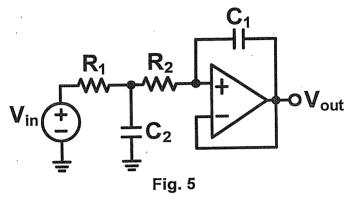


Fig. 4

编號: 179、198

國立成功大學 108 學年度碩士班招生考試試題

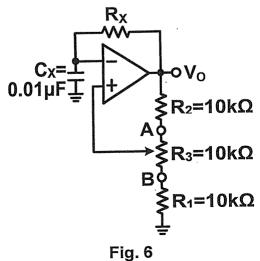
系 所:電機工程學系、電機資訊程度一般電、茶米聯招


考試科目:電子學

考試日期:0223,節次:1

第3頁,共4頁

5. Explanatory questions:


- (a) Draw and explain the circuit diagram of a basic Wien-bridge oscillator. (5%)
- (b) A student mistakenly configures a Sallen and Key filter as shown in Fig. 5. Explain why this is not a useful circuit. (5%)

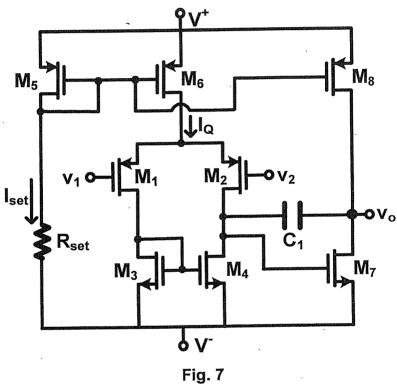
6. Consider a three-pole feedback amplifier with a loop gain function given by

$$T(f) = \frac{1000}{(1+j\frac{f}{10^4})(1+j\frac{f}{10^6})(1+j\frac{f}{10^8})}$$

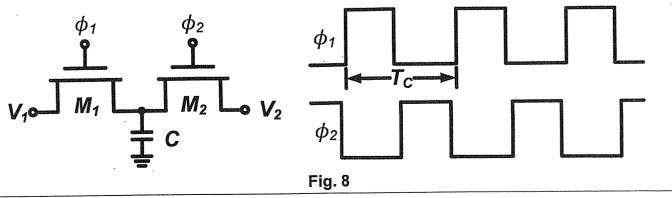
- (a) Please draw the Bode plot of this amplifier. (5%)
- (b) Insert an additional dominant pole (assuming all original poles do not change) such that the resulting phase margin is at least 45 degrees. (5%)
- 7. Consider the circuit shown in Fig. 6. Assume the saturated output voltages of op-amp are ± 10 V.
 - (a) Find R_x such that the frequency of oscillation is 500 Hz when the potentiometer is connected to point A. (5%)
 - (b) Using the result of (a), determine the oscillator frequency when the potentiometer is connected to point B. (5%)

編號: 179、198

國立成功大學 108 學年度碩士班招生考試試題


系 所:電機工程學系、電機資訊學院一般電、茶料解拍

考試科目:電子學


考試日期:0223,節次:1

第4頁,共4頁

- 8. For the op-amp circuit shown in Fig. 7, assume transistor parameters of $|V_T|$ =0.5V (all transistors), $K_n'(=\mu_nC_{ox})=100\mu\text{A/V}^2$, $K_p'(=\mu_pC_{ox})=40\mu\text{A/V}^2$, and circuit parameters of V^+ =5 V, V^- =-5V, R_{set} =225 $k\Omega$ and C_1 =2pF. Given that the width-to-length ratios of transistor M_3/M_4 =6.25 and all other transistors have the same W/L ratios of 12.5.
 - (a) Determine the dc bias currents of the input (i.e. M_1/M_2) and second (i.e. M_7) stages. (4%)
 - (b) Assume $\lambda(=1/V_A)=0.02V^{-1}$ for all transistors, find the small-signal voltage gains of the input and second stages, and the overall voltage gain of the op-amp. (5%)
 - (c) Calculate the slew rate of this op-amp. (3%)

- 9. Consider the switched-capacitor circuit shown in Fig. 8.
 - (a) If the clock frequency is $f_c=100$ kHz and C=1.2 pF, what is the value of the simulated resistance? (4%)
 - (b) A 50M Ω resistor is to be simulated using a clock frequency of f_C= 50 kHz. What is the required value of capacitor? (4%)

