編號: 169

國立成功大學 108 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:電磁學 考試日期:0223,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. (10分)

In time-domain the Poynting vector is defined as $\vec{P} = \vec{E} \times \vec{H}$, where \vec{E} and \vec{H} are (x,y,z) and time-varying functions. If all the fields are time-harmonic, it is convenient to use their phasor forms $\vec{E}_s(x,y,z)$ and $\vec{H}_s(x,y,z)$, which are complex fields. The relations between the phasors and time-varying fields are $\vec{E}(x,y,z,t) = \text{Re}\left[\vec{E}_s(x,y,z)e^{j\omega t}\right]$ and $\vec{H}(x,y,z,t) = \text{Re}\left[\vec{H}_s(x,y,z)e^{j\omega t}\right]$, respectively. Explain why the complex Poynting vector is defined as $\vec{P}_c = \frac{1}{2}\vec{E}_s \times \vec{H}_s^*$, where * denotes complex conjugate.

2. (10分)

For static fields, the Ampere's law is $\nabla \times \vec{H} = \vec{J}$, where \vec{H} is the magnetic intensity field and \vec{J} the conduction current density. Explain why it is necessary to include a displacement current density in the Ampere's law for time-varying conditions, i.e., $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$, where \vec{D} is the displacement flux density field and $\frac{\partial \vec{D}}{\partial t}$ is the displacement current density.

3. (10分)

Describe the general characteristics of the following electromagnetic waves: (a) uniformly plane waves, (b) attenuated waves, (c) guided waves, (d) evanescent waves, and (e) radiated waves.

4. (10分)

A conducting sphere of radius a has a total charge Q uniformly distributed on its surface. If the sphere is embedded in a medium with permittivity ε , find the energy stored.

5. (10分)

A metal bar of conductivity σ is bent to form a flat 90° sector of inner radius a, outer radius b, and thickness t as shown below. Find the resistance of the bar between the vertical curved surfaces at $\rho = a$ and $\rho = b$ if b/a = 6/5, $\sigma = 4 \times 10^7$ S·m⁻¹ and t = 0.5 cm.

編號: 169

國立成功大學 108 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目: 電磁學

考試日期:0223,節次:2

第2頁,共2頁

6. (10分)

A planar boundary is formed by two regions. Region 1 (x < 0) is free space, while region 2 (x > 0) is a magnetic material with $\mu = 50\mu_0$. If magnetic flux density field in region 1 is given by $\vec{B}_1 = 40\hat{a}_x - 30\hat{a}_y + 10\hat{a}_z \text{ mWb/m}^2$, find the magnetic intensity field in region 2.

7. (10分)

A rectangular loop is located near an infinite line current, as illustrated below. If the loop moves with velocity ν away from the linear conductor and the current in the linear conductor is $I_0 \cos(\omega t)$, what is the induced voltage in the loop at x?

8. (10分)

In a source-free vacuum region, a magnetic field in cylindrical coordinates is given by

$$\vec{H} = \frac{1}{\rho} \cos(\omega t - 3z) \hat{a}_{\phi} \text{ A/m}$$

Find the associated electric field and numerical value of ω .

9. (10分)

A lossless transmission line, with characteristic impedance 50 Ω and electrical length of $l=0.27\lambda$, is terminated by a load impedance $40-j25\,\Omega$. Determine reflection coefficient at load Γ_L , standing-wave ratio (SWR), and input impedance $Z_{\rm in}$.

10. (10分)

Determine the size of an air-filled cubic cavity made of copper that it will give a dominant resonant frequency of 12 GHz.

Some formula:

In cylindrical coordinates, $\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$

$$\nabla \times \vec{A} = \left[\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right] \hat{a}_{\rho} + \left[\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho} \right] \hat{a}_{\phi} + \frac{1}{\rho} \left[\frac{\partial \left(\rho A_{\phi} \right)}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi} \right] \hat{a}_z$$