編號: 247

國立成功大學 108 學年度碩士班招生考試試題

系 所:工業與資訊管理學系

考試科目:作業研究

考試日期:0224,節次:2

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

I.1. (20%) Consider the following problem and its resulting final simplex tableau.

Maximize
$$Z = ax_1 + bx_2 + cx_3$$
 B.V. $x_1 x_2 x_3 x_4 x_5$ RHS subject to $6x_1 + 3x_2 + 5x_3 \le i$ Z 0 2 0 $\frac{1}{5}$ $\frac{3}{5}$ d $3x_1 + 4x_2 + 5x_3 \le j$ x_1 1 e 0 g $-\frac{1}{3}$ $\frac{5}{3}$ x_1 x_2 x_3 x_4 x_5 RHS subject to x_1 x_2 x_3 x_4 x_5 RHS x_1 x_2 x_3 x_4 x_5 x_5 x_5 x_5 x_7 x_8 $x_$

Identify the value of a, b, c, d, e, f, g, h, i and j.

I.2. (20%) NCKU company makes three products. Each production run of product i involves a fixed cost F_i and a per-unit cost c_i . The unit revenue for product i is r_i . These products need two production processes. The time requirement and availabilities for each process are given as follows:

	Product			Hours
Process	1	2	3	available
I	0.25	0.2	0.3	300
II	0.4	0.5	0.2	400

NCKU will upgrade exactly one of two processes. The upgrade will raise the number of availabe hours by 20% for Process I and 10% for Process II. Formulate a mathematical Progamming model to determine which process to upgrade and the production levels to maximize the profit.

I.3. (10%) Consider the following problem:

Maximize
$$Z = 5x_1 - x_1^2 + 8x_2 - x_2^2 + 10x_3 - x_3^2 + 15x_4 - x_4^2 + 20x_5 - x_5^2$$
, subject to

$$x_1 + x_3 + x_4 \le 25$$
, $x_1 \in \{3, 6, 12\}, x_2 \in \{3, 6\}, x_3 \in \{6, 12\}, x_4 \in \{3, 6, 9, 12\}, x_5 \in \{9, 12, 15, 16\}$, and all these variables must have different values.

Use the techniques of constraint programming (domain reduction, constraint propagation, a search procedure, and enumeration) to identify all the feasible solutions and then to find an optimal solution.

編號: 247

國立成功大學 108 學年度碩士班招生考試試題

系 所:工業與資訊管理學系

考試科目:作業研究 考試日期:0224,節次:2

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- II.1 (15%) Data indicates that the number of traffic accidents in NCKU on a rainy day is a Poisson random variable with mean 9, whereas on a dry day it is a Poisson random variable with mean 3. Let *X* denote the number of traffic accidents tomorrow. The central weather bureau forecasts that it will rain tomorrow with probability 0.6, find
 - a. The expected value E(X);
 - b. The probability $P\{X=0\}$;
 - c. The variance Var(X)
- II.2 (15%) Wafers arrive at an IC fabrication facility and wait in the buffer area until a total number of k wafers have accumulated. Upon the arrival of the kth wafer, all wafers are instantaneously processed by the machine, and the process repeats. Let x_k , $k = 1, 2, \ldots$, denote the arrivals of wafer in successive periods, assumed to be independent random variable whose distribution is given by $Pr\{x_k = 0\} = \alpha$, and $Pr\{x_k = 1\} = 1-\alpha$, where $0 < \alpha < 1$. Let X_n denote the number of wafers in the system at time n.
 - a. State assumptions required so that the above production problem can be modeled as a Markov chain;
 - b. Define state space and show that $\{X_n: n = 0, 1, 2, ...\}$ is a Markov Chain;
 - c. Derive the transition probabilities and the transition probability matrix.
- II.3 (20%) Customers arrive at a service station according to a Poisson process of rate λ customer/hour. Let X(t) be the number of customers that have arrived up to time t. Consider a fixed time s for 0 < s < t, determine
 - a. The conditional probability $P\{X(t) = n+k \mid X(s) = n\}$;
 - b. The expected value E[X(t) X(s)].