題號: 354

節次:

國立臺灣大學 108 學年度碩士班招生考試試題

科目: 線性代數(C)

題號:354

共 1 頁之第 1 頁

1. Suppose T is a function of transformation.

- (a) What is the definition of linear transformation? (5%)
- (b) Suppose T is defined as: (5%)

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_3 \\ x_1^3 + 3x_2^2 \end{bmatrix}$$

Is T linear? If it is linear, find its matrix. If it is not linear, give an example that shows why not.

2. Let A denote a rotation matrix:

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

- (a) Find the angle of θ . (2%)
- (b) Find the characteristic polynomial of A, and use it to find all eigenvalues of A or to show that none exist. (4%)
- (c) Compute A^{2011} . (4%)
- 3. Let *A* be the following matrix:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix}$$

- (a) Find the eigenvalues of A. (3%)
- (b) Find bases for the eigenspaces of A. (7%)
- (c) Write down an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. (10%)

4. Let
$$A = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
. Find the exponential matrix e^A . (10%)

- 5. Consider an $n \times n$ matrix A with real entries, which satisfies $A^2 = -I$, where I is the identity matrix.
 - (a) What are the eigenvalues of A? (10%)
 - (b) Give an example of such 4×4 matrix A. (5%)
 - (c) Does there exist such a matrix for n = 3? (5%)
 - (d) Can be A symmetric? Why? (10%)
- 6. Consider a 4x4 square matrix A

$$A = \begin{bmatrix} 387 & 456 & 589 & 238 \\ 488 & 455 & 677 & 382 \\ 440 & 982 & 654 & 651 \\ 892 & 564 & 786 & 442 \end{bmatrix}$$

Calculate the sum of the eigenvalues of A. (6%)

- 7. Let **D** denote the differential operator; that is, $\mathbf{D}(f(t)) = df/dt$. Each of the following sets is a basis of a vector space V of functions. Find the matrix representing **D** in each of the following basis.
 - (a) $\{1, t, \sin 3t, \cos 3t\}$ (7%)
 - (b) $\{e^{5t}, te^{5t}, t^2e^{5t}\}$. (7%)