題號: 272

國立臺灣大學 108 學年度碩士班招生考試試題

科目: 工程數學(G)

題號: 272

共 1 頁之第 1 頁

新力· C

- 1. (30%). Let $\overline{f}(s) = L[f(x)] = \int_0^\infty e^{-sx} f(x) dx$ be the Laplace transform of f(x).
 - (a). (5%). Find out the Laplace transform of the function x^n where n is a positive integer.
 - (b). (5%). Let H(x) be the Heaviside unit step function. Show that

$$L[f(x-a)H(x-a)] = e^{-as} \overline{f}(s),$$

where a > 0 and $\overline{f}(s)$ is the Laplace transform of f(x).

(c). (10%). Let y(x) satisfy the following differential equation

$$\frac{d^4y}{dx^4} = \delta(x-1), \qquad 0 < x < 2,$$

$$y(0) = 0$$
, $y'(0) = 0$, $y(2) = 0$, $y'(2) = 0$.

where $\delta(x)$ is the Dirac delta function. Set $y''(0) = \alpha$, $y'''(0) = \beta$. Let y(s) be the Laplace transform of the function y(x). Determine y(s) in terms of α and β .

- (d). (10%). (Continued with (c)) Find y(x) by determining the inverse Laplace transform of y(s). (Note that α and β can be determined by the boundary conditions.)
- 2. (6%) Let **u** and **v** be two real vectors, where $\mathbf{u} = (u_1, u_2, 1)^T$ and $\mathbf{v} = (0, 2, v_3)^T$. Are there some conditions on u_1, u_2 and v_3 , in order to make the following equations valid? If yes, what are the conditions? If no, state your reasons.
 - (a) $(2\%) \mathbf{u} \cdot \mathbf{v} = \mathbf{0}$
 - (b) (2%) $\mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{u} = \mathbf{0}$
 - (c) (2%) $\mathbf{u} \times \mathbf{v} \mathbf{v} \times \mathbf{u} = \mathbf{0}$
- 3. (24%) Consider a 4×4 matrix A, in the form as indicated, where a, b, c and d are constants. Knowing that the eigenvalues of matrix A are: 1, 1, 4, 5:
- $\mathbf{A} = \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- (a) (3%) Find the determinant of matrix A.
- (b) (3%) Find the trace of matrix A.
- (c) (3%) Find the determinant of matrix A^2 .
- (d) (3%) Find the trace of matrix A^2 .
- (e) (3%) Knowing that a=2, c=1, find b and d.
- (f) (9%) Continued with (e), find eigenvectors of matrix A.
- 4. (25%). Suppose that a 30-cm long string has a tension of 100 N and a mass of 75 g. The left end (i.e., x = 0) of the string is fixed whereas the right end (x = 30 cm) of the string is subject to an external force that yields a transverse displacement of $0.01\sin\omega_d t$ (m) on the right end of the string. The partial differential equation (PDE) for the transverse displacement u(x,t)

of the string takes the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, where c is the wave speed defined as $\sqrt{\frac{T}{\rho_l}}$, in which T and ρ_l are the tension

and linear mass density of the string, respectively.

- (a). (5%). What are the boundary conditions to the PDE?
- (b). (10%). Determine the numerical value of c and solve the transverse displacement u(x,t) along the string in terms of ω_a .
- (c). (5%). Find the resonant frequencies of the string.
- (d). (5%). Assuming the driving frequency of the external force ω_d is 0.8 multiplied by the fundamental resonant frequency (i.e., $\omega_d = 0.8\omega_0$, ω_0 is the fundamental resonant frequency), what is the maximum amplitude of displacement along the string?
- 5. (15%). Let $w = x^2y$, and C is the closed curve formed by a quarter circle in the first quadrant.
 - (a). (5%). Evaluate $\frac{\partial w}{\partial n}$, i.e., the normal derivative of w, along the circular curve between (1,0) and (0,1).
 - (b). (10%). Evaluate $\oint_C \frac{\partial w}{\partial n} ds$.

$(0,1) \qquad y = \sqrt{1-x^2} \\ C \qquad (0,0) \qquad (1,0) \qquad x$

試題隨卷繳回