題號:237 科目: 靜力學 題號: 237 節次: 7 共 4 頁之第 1 頁 1. The members of the mechanism are pin-connected at their centers as shown in Figure 1. The member length AC = DE = 2 m. Two vertical forces F_1 and F_2 act at E and C as shown. The spring is unstretched when $\theta = 45^{\circ}$. The spring constant k = 400 N/m. Neglect the weight of the members. - (a) If $F_1 = F_2 = F$, draw the free body diagrams for the members AC and DE. (10 %) - (b) If $F_1 = F_2 = F$, plot the F vs. θ graph (range: $0^\circ < \theta < 45^\circ$). (10 %) - (c) Set $F_1 = F_2 = 30$ N, determine the θ for stable equilibrium. (10 %) - (d) Set $F_1 = 0$ N and $F_2 = 60$ N, determine the θ for stable equilibrium. (10 %) Figure 1 見背面 題號: 237 科目: 静力學 題號:237 共 4 頁之第 2 頁 節次: 7 2. The maximum tension that can be afforded in the chord shown in Figure 2 is 300 N. The pulley at A is free to rotate and the coefficient of static friction at the fixed drums B and C is μ_s = 0.3. Assume that the force T applied at the end of the chord is directed vertically downward. Determine the largest mass of the cylinder that can be lifted by the chord. (30 %) Figure 2 接次頁 科目: 静力學 237 節次: 7 題號: 共 4 頁之第 3 頁 題號:237 3. Figure 3-1 below depicts a human lower limb as a 3-link model connected by frictionless revolute joints. 11 muscles are chosen to be included for human movement modeling as shown in Figure 3-2 with muscles RF: rectus femoris, ST: semitendinosus, SM: semimembranosus, CL: biceps femoris caput longum, TA: tibialis anterioris, IL: iliacus, CB: biceps femoris caput breve, SO: soleus, GL: glutei, VA: vasti, GA: gastrocnemius. Figures 3-3(a), 3-3(b), and 3-3(c) represent the segments of the lower limb thigh, shank, and foot, respectively. Each segments are shown with muscles as indicated. For example, the foot (3-3(c)) has three muscles TA, SO, and GA at different locations. The distal side indicates away from the main mass of the body. Taking Fig.3-3(c) as an example, the distal side of the foot denotes the toes. - (a) Draw the free body diagram of the thigh (4 分) and derive the equations of motion (6 分) - (b) Draw the free body diagram of the shank (4 %) and derive the equations of motion (6 %) - (c) Draw the free body diagram of the foot (4 %) and derive the equations of motion (6 %) Please use the notations of forces shown below to derive the equations of motion of the thigh, shank, and foot. F₁ Force of muscle rectus femoris F₂ Force of muscle semitendinosus F₃ Force of muscle semimembranosus F₄ Force of muscle biceps femoris caput longum F₅ Force of muscle tibialis anterioris F₆ Force of muscle iliacus F₇ Force of muscle biceps femoris caput breve F₈ Force of muscle soleus F₉ Force of muscle glutei F₁₀ Force of muscle vasti F₁₁ Force of muscle gastrocnemius R_{1.x} Horizontal component of reaction force at hip R_{1,v} Vertical component of reaction force at hip R_{2x} Horizontal component of reaction force at knee R_{2,v} Vertical component of reaction force at knee R_{3,x} Horizontal component of reaction force at ankle R_{3,v} Vertical component of reaction force at ankle 見背面 題號: 237 科目: 節次: 静力學 7 題號:237 共 4 頁之第 4 頁 Figure 3-1: The human lower limb depicted as a 3-link model with revolute joints. Figure 3-2: Position of 11 muscles on the lower limb. Figure 3-3(a): Segment (Thigh) of the lower limb Figure 3-3(b): Segment (Shank) of the lower limb. Figure 3-3(c): Segment (foot) of the lower limb. ## 試題隨卷繳回