題號:237

科目: 靜力學

題號:

237

節次: 7 共 4 頁之第 1 頁

1. The members of the mechanism are pin-connected at their centers as shown in Figure 1. The member length AC = DE = 2 m. Two vertical forces F_1 and F_2 act at E and C as shown. The spring is unstretched when $\theta = 45^{\circ}$. The spring constant k = 400 N/m. Neglect the weight of the members.

- (a) If $F_1 = F_2 = F$, draw the free body diagrams for the members AC and DE. (10 %)
- (b) If $F_1 = F_2 = F$, plot the F vs. θ graph (range: $0^\circ < \theta < 45^\circ$). (10 %)
- (c) Set $F_1 = F_2 = 30$ N, determine the θ for stable equilibrium. (10 %)
- (d) Set $F_1 = 0$ N and $F_2 = 60$ N, determine the θ for stable equilibrium. (10 %)

Figure 1

見背面

題號: 237 科目: 静力學

題號:237

共 4 頁之第 2 頁

節次: 7

2. The maximum tension that can be afforded in the chord shown in Figure 2 is 300 N. The pulley at A is free to rotate and the coefficient of static friction at the fixed drums B and C is μ_s = 0.3. Assume that the force T applied at the end of the chord is directed vertically downward. Determine the largest mass of the cylinder that can be lifted by the chord. (30 %)

Figure 2

接次頁

科目: 静力學

237

節次: 7

題號:

共 4 頁之第 3 頁

題號:237

3. Figure 3-1 below depicts a human lower limb as a 3-link model connected by frictionless revolute joints. 11 muscles are chosen to be included for human movement modeling as shown in Figure 3-2 with muscles RF: rectus femoris, ST: semitendinosus, SM: semimembranosus, CL: biceps femoris caput longum, TA: tibialis anterioris, IL: iliacus, CB: biceps femoris caput breve, SO: soleus, GL: glutei, VA: vasti, GA: gastrocnemius. Figures 3-3(a), 3-3(b), and 3-3(c) represent the segments of the lower limb thigh, shank, and foot, respectively. Each segments are shown with muscles as indicated. For example, the foot (3-3(c)) has three muscles TA, SO, and GA at different locations. The distal side indicates away from the main mass of the body. Taking Fig.3-3(c) as an example, the distal side of the foot denotes the toes.

- (a) Draw the free body diagram of the thigh (4 分) and derive the equations of motion (6 分)
- (b) Draw the free body diagram of the shank (4 %) and derive the equations of motion (6 %)
- (c) Draw the free body diagram of the foot (4 %) and derive the equations of motion (6 %)

Please use the notations of forces shown below to derive the equations of motion of the thigh, shank, and foot.

F₁ Force of muscle rectus femoris

F₂ Force of muscle semitendinosus

F₃ Force of muscle semimembranosus

F₄ Force of muscle biceps femoris caput longum

F₅ Force of muscle tibialis anterioris

F₆ Force of muscle iliacus

F₇ Force of muscle biceps femoris caput breve

F₈ Force of muscle soleus

F₉ Force of muscle glutei

F₁₀ Force of muscle vasti

F₁₁ Force of muscle gastrocnemius

R_{1.x} Horizontal component of reaction force at hip

R_{1,v} Vertical component of reaction force at hip

 R_{2x} Horizontal component of reaction force at knee

R_{2,v} Vertical component of reaction force at knee

R_{3,x} Horizontal component of reaction force at ankle

R_{3,v} Vertical component of reaction force at ankle

見背面

題號: 237 科目: 節次: 静力學

7

題號:237

共 4 頁之第 4 頁

Figure 3-1: The human lower limb depicted as a 3-link model with revolute joints.

Figure 3-2: Position of 11 muscles on the lower limb.

Figure 3-3(a): Segment (Thigh) of the lower limb

Figure 3-3(b): Segment (Shank) of the lower limb.

Figure 3-3(c): Segment (foot) of the lower limb.

試題隨卷繳回