題號: 234

國立臺灣大學 108 學年度碩士班招生考試試題

科目: 控制系統(A)

題號:234 共 2 頁之第 1 頁

節次: 7

- 1. (25%) The block diagram of a position control system is shown in the figure, where $G_p(s)=1/(Js+1)$; J is the moment of inertia; K_a and K_b are the torque and back-emf constants of the DC motor; T(s) is the load frictional torque.
 - a. The angular displacement can be expressed as $\theta(s)=G_I(s)R(s)+G_2(s)T(s)$. Obtain the transfer functions $G_I(s)$, $G_2(s)$ in terms of $G_c(s)$, $G_p(s)$, K_a , K_b .
 - b. Assume that T(s)=0 and the proportional control $(G_c(s)=K_p)$ are applied on the feedback system. (1) Find natural frequency (ω_n) and K_p in terms of K_a , K_b , and K_b such that the closed-loop system is critically damped. (2) If $K_b=1$ kg-m², $K_a=1$ Nm/A, and $K_b=1$ V/(rad/s), find $\theta(t)$ for a unit step input r(t).

- 2. (25%) Two systems are discussed in this problem.
- a. Consider the following input-output transfer function: $G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{(s+1)(s+3)(s+4)}$. Derive the state-space form $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$; $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$. For a specific full-state feedback controller $\mathbf{K} = [K_1 \ K_2 \ 1]$, determine the values of K_1 , K_2 such that the dominant closed-loop poles have the damping ratio (ζ) of 0.5 and natural frequency (ω_n) is 3 rad/sec.
- b. Consider a unity feedback system, where the open-loop transfer function is $G_c(s)G_p(s) = \frac{as+2}{s^2}$. Determine the value of a as that the phase margin is equal to 45°. Sketch the root locus diagram for $a \ge 0$ to explain the effect of a on the closed-loop system stability.
- 3. (25%) Consider the following unity feedback system with

$$G(s) = \frac{K(s+6)}{s(s+2)(s+3)}$$

It is operating with a 25% overshot. (Hint: You can design a controller either in frequency domain or time domain. Semi-log diagrams are attached, if need them.)

- a. Find the settling time.
- b. Find K_{ν} .
- c. Please design a compensator that will yield a threefold improvement in K_{ν} and a twofold reduction in settling time while keeping the overshot at 25%.

4.(25%) The open-loop frequency response shown below, was experimentally obtained from a unity feedback system. Please (a) identify the system transfer function, (b) estimate the percent overshoot and steady-state error of the closed-loop system.

見背面

題號: 234

國立臺灣大學 108 學年度碩士班招生考試試題

科目: 控制系統(A)

題號: 234

共2頁之第2頁

試題隨卷繳回