題號: 239 國立,

國立臺灣大學108學年度碩士班招生考試試題

科目: 化工熱力學與反應工程

題號:239

節次: 7

共 2 頁之第 1 頁

第一部分選擇題(1~6),請務必使用試卷第一頁[選擇題作答區]作答。(佔30%)

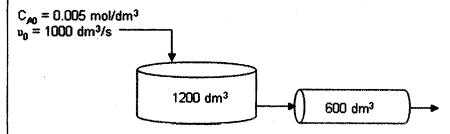
- (5%) 1. Suppose that 10.0 mol $C_2H_6(g)$ is confined to 4.86L at 27°C. Predict the compression factor, Z, of the ethane assuming that it is a van der Waals gas. The van der Waals constants for ethane are $a = 5.507 L^2$ atm mol⁻² and b = 0.0651L mol⁻¹ and the gas constant, R, is 0.082 L atm K^{-1} mol⁻¹.
- (a) 0.92, (b) 0.84, (c) 0.70, (d) 0.61, (e) 0.55.
- (5%) 2. Calculate the final temperature of a sample of argon of mass 12 g that is expanded reversibly and adiabatically from 1.0L at 273.15 K to 3.0L.
- (a) 131.0 K , (b) 163.0 K , (c) 208.0 K , (d) 236.0 K , (e) 315.2 K
- (5%) 3. Calculate the standard enthalpy of formation of butane $\Delta_t H^*(butane, g)$ at 25°C from its standard enthalpy of
- combustion, $\Delta_{comb}H^{\circ}(butane,g)=-2878\,kJ\,mol^{-1}$, $\Delta_{f}H^{\circ}(CO_{2},g)=-393.51\,kJ\,mol^{-1}$, and $\Delta_{f}H^{\circ}(H_{2}O,I)$
- $= -285.83 \text{ kJ mol}^{-1}$.
- (a) -95 kJ mol^{-1} , (b) -125 kJ mol^{-1} , (c) -152 kJ mol^{-1} , (d) -220 kJ mol^{-1} , (e) -305 kJ mol^{-1}
- (5%) 4. When a certain fluid used in refrigeration was expanded adiabatically from an initial pressure of 32 atm and 0°C to a final pressure of 1 atm, the temperature fell by 22 K. Calculate the Joule-Thomson coefficient, μ , at 0°C. Assuming it remains constant over this temperature range.
- (a) -2.2 K atm^{-1} , (b) -1.5 K atm^{-1} , (c) 0.1 K atm^{-1} , (d) 0.7 K atm^{-1} , (e) 1.8 K atm^{-1}
- (5%) 5. Calculate the increase in entropy when 1 mol of a monatomic perfect gas with the molar heat capacity at constant pressure, $C_{p,m} = 5R/2$, where R is the gas constant, is heated from 300 K to 600 K and simultaneously expanded from 30 L to 50 L.
- (a) $-16JK^{-1}$, (b) $3JK^{-1}$, (c) $7JK^{-1}$, (d) $13JK^{-1}$, (e) $16JK^{-1}$
- (5%) 6. When 2 *mol* of a gas at 330 K and 3.5 *atm* is subjected to isothermal compression, its entropy decreases by $25 J K^{-1}$. Calculate the final pressure of the gas.
- (a) 60.8 atm, (b) 51.5 atm, (c) 43.3 atm, (d) 25.2 atm, (e) 15.7 atm
- 第二部分計算題(7-11)。(佔 70%) ※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。
- (10%) 7. By measuring the equilibrium between liquid and vapor phases of an acetone(A)/ethanol(E) solution at 57.2°C at 1atm, it was found that $x_A = 0.4$ when $y_A = 0.516$. Calculate the activity coefficients of A and E in this solution on the

Raoult's law basis. The vapor pressures of the pure components at this temperature are: $P_A^* = 786 \, torr$ and $P_B^* = 551 \, torr$.

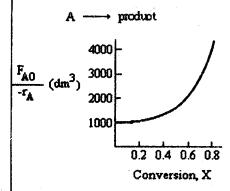
- (x_A is the mole fraction in the liquid and y_A the mole fraction in the vapor.)
- (10%) 8. The emf of the cell Ag|AgI(s)|AgI(aq)|Ag is 0.95 V at 25 $^{\circ}$ C. Calculate the solubility of AgI in the unit of mol kg^{-1} .

題號: 239 國立臺灣大學108學年度碩士班招生考試試題

科目:化工熱力學與反應工程


題號: 239

節次: 7


共 2 頁之第 2 頁

(15 %) 9. Use Levenspiel plots to calculate conversion from known reactor volumes

Pure A is fed at a volumetric flow rate of 1000 dm³/h and at a concentration of 0.005 mol/dm³ to an existing CSTR, which is connected in series to an existing tubular reactor.

If the volume of the CSTR is 1200 dm³ and the tubular reactor volume is 600 dm³, what are the intermediate and final conversions that can be achieved with the existing system? The reciprocal rate is plotted in the figure below as a function of conversion for the conditions at which the reaction is to be carried out.

(15%) 10. A first order reaction A(l) \rightarrow B(l) is to be carried out adiabatically in a CSTR. Given A, E, T_0 , v_0 , C_{A0} , and F_{A0} , find the reactor volume that produces a conversion X_A . The heat capacities of A & B are approximately equal, & W_s=0.

- a) Solve TEB (Total Energy Balance) for T:
- b) Plug the k calculated for the reaction's temperature when the specified X_A is reached into the design equation to calculate V_{CSTR}

(20%) 11. The irreversible, elementary liquid-phase reaction $2A \rightarrow B$ is carried out adiabatically in a flow reactor with W_s=0 and without a pressure drop. The feed contains equal molar amounts of A and an inert liquid (I).

The feed enters the reactor at 294 K with $v_0 = 5 \text{ dm}^3/\text{s}$ and $C_{A0} = 1 \text{ mol/dm}^3$. What would be the temperature inside of a steady-state CSTR that achieved $X_A = 0.8$? Extra info:

$$E = 10,000 \text{ cal/mol}$$

$$C_{nA} = 15 \text{ cal/mol} \cdot \text{K}$$

$$C_{pp} = 30 \text{ cal/mol} \cdot \text{K}$$

$$C_{pA} = 15 \text{ cal/mol} \cdot \text{K}$$
 $C_{pB} = 30 \text{ cal/mol} \cdot \text{K}$ $C_{pI} = 15 \text{ cal/mol} \cdot \text{K}$ $\Delta H_A^{\circ}(T_R) = -20$

kcal/mol

$$\Delta H_{R}^{\circ}(T_{R}) = -50 \text{ kcal/mol}$$
 $\Delta H_{I}^{\circ}(T_{R}) = -15 \text{ kcal/mol}$

$$\Delta H_{l}^{\circ}(T_{p}) = -15 \text{ kcal/mol}$$

 $k = 0.02 \text{ dm}^3/\text{mol} \cdot \text{s at } 350 \text{ K}$

試題隨卷繳回