題號: 221

國立臺灣大學 108 學年度碩士班招生考試試題

科目: 流體力學(C)

題號:221

節次: 8

共2頁之第1頁

You can answer your questions in English or Chinese.

1. **(20 points)** Consider the incompressible, two-dimensional flow of a non-viscous fluid between the boundaries shown in the following figure. The velocity potential for this flow field is

$$\phi = x^2 - y^2$$

- (a) Draw the flow net for this flow.
- (b) Determine the corresponding stream function
- (c) What is the relationship between the discharge q passing between the walls and the coordinates, x_i, y_i of any point on the curved wall? Neglect body forces.
- (d) If the pressure on the wall (x=2m, 0) is 75 kPa, what is the pressure on the other point of the wall (x=0, y=1m), assuming there is no elevation difference between these two points (x-y plane is horizontal)?

Figure 1

2. **(20 points)** Figure 2 shows fluid with density ρ flowing through a two-dimensional conduit, whose width and length are b and h, respectively. At the entrance of the conduit, the velocity is u_0 and is uniformly distributed. The pressure at the entrance is p_A . At the exit of the conduit, the velocity profile is a parabola, given by

$$u = U \left[1 - \left(\frac{2y}{b} \right)^2 \right]$$

where U is the maximum value of the velocity at the exit cross section and y = 0 represents the centerline. The pressure at the exit cross section is given by

$$p_B = p_a - 2.25\rho \frac{U^2}{2}$$

- (a) Determine the relationship between u_0 and U.
- (b) Determine the force applied per unit width of the conduit.

Figure 2

見背面

221

國立臺灣大學 108 學年度碩士班招生考試試題

科目: 流體力學(C) 節次: 8

共2頁之第2頁

題號:221

3. (20 points) The experimental measurements show that the pressure drop ΔP along the axis of a cylindrical pipe of uniform cross section depends on the following variables:

Pipe diameter D of the pipe

Axial length of the pipe /

The fluid density ρ

Dynamic viscosity μ

Gravitational constant g

The composition of the inner surface denoted by an absolute roughness height ϵ . Average fluid velocity V over the pipe cross section. Obtain a set of dimensionless parameters using the PI theorem. Choose μ , D and V as the repeating variables. Also explain the physical meaning of each dimensionless parameter applied.

4. (20 points)

- (a) Describe what is the difference between the Navier-Stokes equations and the Euler equations.
- (b) Navier-Stokes equations and the mass balance equation (4 differential equations) can be solved for 4 unknowns for fluids as a function of space and time. Can you describe those four unknowns?
- (c) What is a "fully developed flow"?
- 5. (20 points) The components of a velocity field are given by $u = \frac{10y}{(x^2+y^2)^{1/2}}$, and $v = -\frac{10x}{(x^2+y^2)^{1/2}}$.
- (a) Describe the steadiness and dimensionality (1D, 2D or 3D?) of the flow.
- (b) Determine the local and convective acceleration, respectively.
- (c) Determine the streamline and streakline for the above flow field.

試題隨卷繳回