題號: 65

國立臺灣大學 108 學年度碩士班招生考試試題

科目:普通化學

節次: 8

題號: 65 共 2 頁之第 1 頁

*請在答案卷上標明題號並依序作答,計算題需要計算過程及正確單位

- Gas constant: R = 8.314 J/mol-K = 0.0821 L-atm/mol-K
- H = 1.01 g/mol; C = 12.0 g/mol; P = 31.0 g/mol; O = 16.0 g/mol; O = 23.0 g/mol; O = 14.0 g/mol
- $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.63 \times 10^{-34} \text{ J-s}$; $R_H = 1.096776 \times 10^7 \text{ m}^{-1}$; F = 96500 C/mol
- A typical commercial-grade phosphoric acid is 75%H₃PO₄ by mass and density 1.57 g/mL. Calculate the molarity (mol/L) of the acid.
- 2. A student weighs out 0.5681 g of potassium hydrogen phthalate (KHP, molar mass = 204.0 g/mol) and titrates to the equivalence point with 21.54 mL of a stock NaOH solution. What is the concentration of the stock NaOH solution?
- 3. A 0.5865 g sample of lactic acid (C₃H₆O₃) is burned in a calorimeter whose heat capacity is 4.812 kJ/°C. The temperature increases from 23.10°C to 24.95°C. Calculate the molar heat of combustion of lactic acid. (5%)
- 4. Calculate the pH values of the following solutions:

(15%)

- (A) 0.10 M HCl(aq)
- (B) 0.10 M CH₃COOH(aq)
- (C) A solution containing 0.10 M CH₃COOH and 0.10 M CH₃COONa For acetic acid, CH₃COOH, $K_a = 1.0 \times 10^{-5}$.
- 5. The safety air bags in automobiles are inflated by nitrogen gas generated by the rapid decomposition of sodium azide, NaN₃: NaN₃(s) → Na(s) + N₂(g). If an air bag has a volume of 36.0 L and is to be filled with nitrogen gas at a pressure of 1.15 atm and a temperature of 27.0 °C, how many grams of NaN₃ must be decomposed? Write down the balanced chemical equation first.
- 6. Identify and name the functional groups (in English) of the compound.

(10%)

7. Consider the following reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

The initial rate of the reaction is measured at several different concentrations of the reactants with the following results.

- (A) Determine the rate law of the reaction.
- (B) If the initial concentrations of NO₂ and CO are 0.30 M and 0.60 M respectively, what is the value of the initial rate of the reaction? (10%)

$[NO_2]_0(M)$	[CO] ₀ (M)	Initial rate (M/s)	
0.10	0.10	0.0021	
0.20	0.10	0.0082	
0.20	0.20	0.0083	
0.40	0.10	0.033	

題號: 65

國立臺灣大學 108 學年度碩士班招生考試試題

科目:普通化學

節次: 8

題號: 65

共 2 頁之第 2 頁

8. Consider the decomposition of calcium carbonate under standard states and 298 K:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
.

- (A) Use the data in the following table to calculate the values of ΔH^{o} , ΔS^{o} , and ΔG^{o} at 298 K.
- (B) Is this an endothermic or exothermic reaction?
- (C) How is the entropy change of the system, increase or decrease?
- (D) Is the process spontaneous or not at 298 K?

(E) What is the value of the ΔG when the reaction is at equilibrium?

(10%)

	CaCO ₃ (s)	CaO(s)	$CO_2(g)$
ΔH _f ° (kJ/mol)	-1207	-636	-394
S° (J/mol.K)	93	40.	214
$\Delta G_{\rm f}^{o}$ (kJ/mol)	-1129	-604	-394

- 9. For the galvanic cell $Mg(s)|Mg^{2+}(aq)|Al^{3+}(aq)|Al(s)$,
 - (A) Indicate the anode, cathode, and the direction of electrons flow.
 - (B) Give the balanced net equation for the cell reaction.
 - (C) Calculate the standard cell voltage at 298 K.
 - (D) Calculate the standard free-energy change, $\Delta G^{\text{o}},$ of the reaction at $25^{\text{o}}\text{C}.$
 - (E) What is the value of cell voltage when the reaction reaches equilibrium?

(10%)

$$Al^{3+} + 3e^{-} \rightarrow Al$$
 $E^{\circ} = -1.66 \text{ V}$
 $Mg^{2+} + 2e^{-} \rightarrow Mg$ $E^{\theta} = -2.37 \text{ V}$

- 10. For the complex ion $[CoF_6]^{3-}$, F is a weak field ligand.
 - (A) Give the oxidation state and coordination number of central metal ion.
 - (B) Write the electron configurations of the central metal ion.
 - (C) What's the geometry of the complex ion?
 - (D) Draw the crystal-field energy-level diagrams and show the placement of electrons for the complex.
 - (E) Is the complex ion diamagnetic or paramagnetic?

(10%)

11. Consider the O_2 molecule:

- (A) Draw the molecular orbitals energy-level diagram.
- (B) Determine the bond order.
- (C) Indicate the magnetic property (diamagnetic or paramagnetic) of the molecule.

(10%)