國立政治大學 108 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共2頁

考	試	科	且	基礎數學	系所別	統計學系	考	試明	手間	2	月	18	日	(-)	第	_	節
---	---	---	---	------	-----	------	---	----	----	---	---	----	---	-----	---	---	---

- 1. (20 pts) Let W be a subspace of \mathbb{R}^n .
 - (a) (5 pts) It's known that W is a subset of \mathbb{R}^n and W itself is a vector space. What is a vector space?
 - (b) (5 pts) Define the orthogonal complement of W, W^{\perp} .
 - (c) (10 pts) Show that $R^n = W \oplus W^{\perp}$.
- 2. (10 pts) Let W be the subspace of the plane 3x 2y + z = 0 in \mathbb{R}^3 . Find the shortest distance of the vector u = (2, 3, -1) to W.
- 3. (20 pts) Consider an experimental design. We have 3 factors of interest. Each treatment has two possible levels, H(HIGH) and L(LOW). Thus, there are 8 possible combinations in total. Define the following parameters for the response Y,

$$\mu$$
 = overall mean,
 δ_1 = mean increment due to X_1 ,
 δ_2 = mean increment due to X_2 ,
 δ_3 = mean increment due to X_3 .

The responses Y_1, \dots, Y_8 under the 8 levels are expressed in the following way, where $\epsilon_i, i = 1, \dots, 8$, are random errors.

	10		
Treatment Level			Response model
X_1	X_2	X_3	Y
H	H	H	$Y_1 = \mu + \delta_1 + \delta_2 + \delta_3 + \epsilon_1$
H	H	L	$Y_2 = \mu + \delta_1 + \delta_2 - \delta_3 + \epsilon_2$
H	L	H	$Y_3 = \mu + \delta_1 - \delta_2 + \delta_3 + \epsilon_3$
H	L	L	$Y_4 = \mu + \delta_1 - \delta_2 - \delta_3 + \epsilon_4$
L	H	H	$Y_5 = \mu - \delta_1 + \delta_2 + \delta_3 + \epsilon_5$
\mathbf{L}	H	L	$Y_6 = \mu - \delta_1 + \delta_2 - \delta_3 + \epsilon_6$
L	L	H	$Y_7 = \mu - \delta_1 - \delta_2 + \delta_3 + \epsilon_7$
L	L	L	$Y_8 = \mu - \delta_1 - \delta_2 - \delta_3 + \epsilon_8$
	H H H L L	X ₁ X ₂ H H H H H L H L H L L H L L	X1 X2 X3 H H H H H L H L H H L H H L H L H H L H L L L H

- (a) (10 pts) Express the model of the response variable in matrix form.
- (b) (10 pts) Find the least squared estimates of μ , δ_1 , δ_2 , δ_3 .

國立政治大學 108 學年度 碩士暨碩士在職專班 招生考試試題

第2頁,共2頁

試 科

基礎數學

系 所 別 統計學系

考試時間2月18日(一)第一節

For the following problems, show your calculation to receive full credit.

4. (10 pts) Evaluate the following integral:

$$\int_0^\infty \frac{\sin(x)}{x} \ dx.$$

5. (10 pts) Let

$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Is f continuous at x = y = 0? (Give an explanation.)

6. (30 pts) Let $f(c) = c^T A c$, where c is a 2 × 1 column vector and A is a 2 × 2 matrix:

$$c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 and $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$

- Find c^* that maximizes f(c) subject to $c_1^2 + c_2^2 = 1$. (a) (20 pts)
- (b) (10 pts) Find $f(c^*)$.

備