

<u>A</u>. 2A

<u>B</u>. 4A

國立臺灣海洋大學一()()學年度研究所碩士班暨碩士在職專班入學考試試題

考試科目: 普通物理

系所名稱: 光電科學研究所碩士班不分組

※可使用計算器

1.答案以橫式由左至右書寫。2.請依題號順序作答。

C - 1 - 1 - 1 - 1 - 1 - 1	(For each problem choose one proper	C
Single choice: 4 holpis each	i For each broblem choose one brober	answer from A. to P.)

	Single choice: 4 points	each. (For each problem ch	oose one proper answer	from A. <i>to</i> E.)	
1 A long line of charge with λ_I charge per unit length runs along the cylindrical axis of					
	cylindrical shell which carries a charge per unit length of λ_c . The charge per unit length on the				
	inner and outer surface	es of the shell, respectively a			
	$\underline{\mathbf{A}}$. λ_I and λ_c	$\underline{\mathbf{B}}$. – λ_I and λ_c +	λ_1 \underline{C} . $-\lambda_1$ and	$1\lambda_c - \lambda_I$	
	$\underline{\mathbf{D}}$. $\lambda_I + \lambda_c$ and $\lambda_I - \lambda_c$	\underline{E} . $\lambda_I - \lambda_c$ and λ_i	$I^+ \lambda_c$,
Which of the following types of electromagnetic radiation travels at t vacuum?			adiation travels at the gre	eatest speed in	
	A. Radio waves	<u>B</u> . visible light	<u>C</u> . X rays		
	<u>D</u> . Gamma rays	$\underline{\mathbf{E}}$. All of these tr	avel at the same speed.		
Monochromatic light, at normal incidence, strikes a thin film in air. If λ denotes the wave in the film, what is the thinnest film in which the reflected light will be a maximum?					gth
	\underline{A} . Much less than λ	<u>B</u> . λ∕4	<u>C</u> . λ/2		
	<u>D</u> . 3λ/4	<u>Ε</u> . λ			
4	Visible light has a freq	uency of about:			
	\underline{A} . 5×10^{18} Hz	\underline{B} . $5 \times 10^{16} Hz$			medium .
	\underline{C} . $5 \times 10^{12} Hz$	\underline{D} . $5 \times 10^{14} Hz$	\underline{E} . $5 \times 10^{10} \ Hz$	7	medium 2
					medium .
5	A ray of light passes the \underline{A} . $v_1 > v_3 > v_2$	hrough three media as shown \underline{B} . $v_3 > v_2 > v_1$	n. The speed of light in the \underline{C} . $v_2 > v_1 > v_2 > v_2 > v_3 > v_2 > v_3 > v_3$		×
	$\underline{\underline{D}}$. $v_2 > v_3 > v_1$	$\underline{\underline{E}}$. $v_1 > v_2 > v_3$		2	
_				_	
6 A series <i>RL</i> circuit is connected to am emf source of angular frequency ω. The current:			· /D\		
	A. lags the applied em	•	$\underline{\mathbf{B}}$. leads the applied \mathbf{e}	eming tan - '(\o)L	/R)
	C. lags the applied em		ъ.		
	D. leads the applied er	mf by tan (\omega \text{(\omega R/L)}	<u>E</u> . is zero		
7	The light intensity 10n source is:	n from a point source is 1000	<i>0W/m</i> ² . The intensity <i>100</i>	Om from the same	
	<u>A</u> . 1000W/m²	<u>B</u> . 100W/m²	<u>C</u> . 10W/m	2	
	<u>D</u> . 1W/m²	$\underline{\mathbf{E}}$. 0.1W/m^2			
8	A simple pendulum is suspended from the ceiling of an elevator. The elevator is accelerating upwards with acceleration a . The period of this pendulum, in terms of its length L , g , and a is:				~
		ach a. The period of this per $2\pi\sqrt{L/(g+a)}$	\underline{C} . $2\pi\sqrt{L/(g-a)}$		
		. (1/2π)√g/L	<u> </u>		
	<u></u>	. (/ · B· ~			
9	A hair dryer is marked	"120V, 600W". In normal us	se, the current in it is:		

<u>D</u>. 5A

<u>E</u>. 7.2A

<u>C</u>. 0.2A

10		in phase at the slits and trave nce pattern. The difference in \underline{B} , a wavelength $\underline{\underline{F}}$, five halves of a wave	the distance traveled by to \underline{C} , three halves of	the waves is:
11	P and Q, respectively. W store energies R and S, re	$I\mu F$ capacitor are connected in series and charged by a battery. They store energies ectively. When disconnected and charged separately using the same battery, they R and S , respectively. Then:		
	\underline{A} . $R > P > S > Q$ \underline{D} . $P > R > S > Q$	$\underline{\underline{B}}. P > Q > R > S$ $\underline{\underline{E}}. R > S > Q > P$	\underline{C} . $R > P > Q > S$,
12		carrying wire with edge leng f the following lines can a ch		
	$\underline{A}. \ x = 0, \ y = a/2$ $\underline{D}. \ x = 0, \ y = 0$	$\underline{B}. \ x = a/2, y = a/2$ $\underline{E}. \ x = -a/2, y = -a/2$	$\underline{C}. x = a/2, y = 0$	1
13		each of the component sinus en adjacent nodes in the stan		form a standing
	$\underline{\mathbf{A}}$. $\lambda / 4$ $\underline{\mathbf{B}}$. λ	$\sqrt{2}$. \underline{C} . $3\lambda/4$	<u>D</u> . λ	<u>E</u> . 2\lambda
14	It then compresses a sprin	ally moving to the right on a ng of spring constant k . At the ntial energy of the spring, the \underline{B} . $\sqrt{m/k}$ $\underline{\underline{F}}$. $(v/4)\sqrt{m/k}$	e instant when the kinetic	energy of the
15	•	ially at rest but free to recoil. After firing, the velocity of the \underline{B} . $-Mv/m$ \underline{E} . mv/M		
16	The angular speed of the \underline{A} . $60/\pi$ m/s	minute hand of a watch is: B. $1800/\pi$ rad/s	<u>C</u> . 60/π rad/s	
	<u>D</u> . π /1800 rad/s	<u>Ε</u> . π /1800 m/s	within 1 2 2	
17	7 Two blocks with masses m and M are pushed along a horizontal frictionless surface by a horizontal applied force F as shown. The magnitude of the force of either of these blocks other is:			
	\underline{A} . $mF/(m+M)$	B. mF/M	\underline{C} . $mF/(M-m)$	1
	$\underline{\mathbf{D}}$. $MF/(m+M)$	E. MF/m		

18	At time $t = 0$ a $2kg$ particle has a $(3m/s)j$. During this time the wo	a velocity of <i>(4m/s)</i> i – <i>(3m/s)</i> j rk done on it was:	At $t = 3s$ its velocity is $(2m/s)i$
		$\underline{\mathbf{B}}$. $-4J$	<u>C</u> . – <i>12J</i>
		<u>E</u> . (4J) i – (3J) j	
19	The tension in a string with a linear mass density of 0.0010 kg/m is 0.4 N. A sinusoidal wave with a wavelength of 20 cm on this string has a frequency of:		
	<u>A</u> . 100Hz	<u>B</u> . 0.25Hz	<u>C</u> . 0.0125Hz
	<u>D</u> . 630Hz	<u>E</u> . 1000Hz	_
20	In an oscillating LC circuit, the capacitor is Q . When the charge \underline{A} . $U/2$	total stored energy is U and the on the capacitor is $Q/2$, the e \underline{B} . $U/4$	e maximum charge on the nergy stored in the inductor is: <u>C</u> . 4U/3
	<u>D</u> . 3U/2	<u>E</u> . 3U/4	
21	then deflected by a magnetic fie resulting electron trajectory is:	ld B that is perpendicular to the	
	<u>A</u> . (√ <i>2eV/m</i>) /B	<u>B</u> . B√2eV/m	<u>C</u> . (√2mV/e)/B
	<u>D</u> . <i>B</i> √2 <i>mV</i> / <i>e</i>	$\underline{\mathbf{E}}$. $(\sqrt{2e/mV})/B$	
22	The magnitude of the magnetic	field at point P , at the center Q	of the semicircle shown, is given by:
	$\underline{\mathbf{A}}$. $2\mu_0 i/R$	$\underline{\mathbf{B}}.\mu_{\mathcal{O}}i/R$	\underline{C} . $\mu_0 i / 4\pi R$ rod with
	$\underline{\mathbf{D}}$. $\mu_0 i/2R$		rail resistance R
	R		3×××××××××××××××××××××××××××××××××××××
23	A rod with resistance R lies acro- conducting rails in a constant un- as shown. Assume the rails have applied by a person to pull the ro \underline{A} . θ	iform magnetic field B , negligible resistance. The ma od to the right at constant spee	gnitude of the force that must be d v is: C. BLv/R
	D. B^2L^2v/R	<u>B</u> . B ² Lv ² /R	<u>c</u> . 22, , 11
	<u>D</u> . <i>D</i> ⁻ <i>L</i> ⁻ <i>V</i> / R	<u>E</u> . D EV / R	
24	A ladder leans against a wall. If must be true? A. The coefficient of friction bet	ween the ladder and the wall	must not be zero
	B. The coefficient of friction bet C. Both A and B	ween the ladder and the floor <u>D</u> . Either A or B	must not be zero <u>E</u> . Neither A and B
	•	•	///////////////////////////////////////
25	The critical angle for total internal reflection at a diamond-air interface is 25° . Suppose light is incident at an angle of θ with the normal. Total internal reflection will occur if the incident medium is:		
	$\underline{\mathbf{A}}$. air and $\theta = 25^{\circ}$	$\underline{\mathbf{B}}$. air and $\theta > 25^{\circ}$	$\underline{\mathbf{C}}$. air and $\theta < 25^{\circ}$
	\underline{D} . diamond and $\theta < 25^{\circ}$	$\underline{\mathbf{E}}$, diamond and $\theta > 25^{\circ}$	