

國立臺灣海洋大學一00學年度研究所碩士班暨碩士在職專班入學考試試題

考試科目: 電子學

系所名稱: 光電科學研究所碩士班不分組

※可使用計算器

1.答案以橫式由左至右書寫。2.請依題號順序作答。

- 1. An amplifier has a voltage gain of 200 V/V and a current gain of 2000 A/A. Express the voltage, current, and power gains in decibels. (10%)
- 2. For the circuit in Fig. 1, if $\beta = 100$, $V_E = -0.7$ V, find I_E , I_B , I_C , and V_C . (16%)

3. For the circuit in Fig. 2, let $V_{CC} = 12$ V, I = 100 mA, and $R_L = 100$ Ω . If the output voltage is a 10-V-peak sinusoid, find the following: (a) the power delivered to the load; (b) the average power drawn from the supplies; (c) the power-conversion efficiency. Ignore the loss in Q_3 and R. (12%)

- 4. A BJT differential amplifier is biased from a 2-mA constant-current source and includes a 75-Ω resistor in each emitter. The collectors are connected to V_{CC} via 5-kΩ resistors. A differential input signal of 0.1 V is applied between the two bases. (a) Find the signal current in the emitters (i_e) and the signal voltage v_{be} for each BJT. (b) What is the total emitter current in each BJT? (c) What is the signal voltage at each collector? Assume α = 1. (d) What is the voltage gain realized when the output is taken between the two collectors? Assuming the circuit is operating at room temperature. (20%)
- Assuming the op amp to be ideal, it is required to design the circuit shown in Fig. 3 to implement a current amplifier with gain $i_L/i_l = 30$ A/A. (a) Find the required value for R. (b) If $R_L = 1$ k Ω and the op amp operates in an ideal manner so long as v_O is in the range ± 12 V. What range of i_I is possible? (c) What is the input resistance of the current amplifier? If the amplifier is fed with a current source having a current of 1 mA and a source resistance of 10 k Ω , find i_L . (20%)

6. The circuit in Fig. 4 is required to provide a three-segment approximation to the nonlinear i-v characteristic, $i = 0.1 v^2$, where v is the voltage in volts and i is the current in milliamperes. Find the values of R_1 , R_2 , and R_3 such that the approximation is perfect at v = 2 V, 4 V, and 8 V. Calculate the error in current value at v = 3 V, 5 V, 7 V, and 10 V. Assume ideal diodes. (22%)

