題號: 347 國立臺灣大學101學年度碩士班招生考試試題

科目:熱力學與反應工程

節次: 4 共 1 頁之第 1 頁

Problem 1 (20%)

(a) Using the Maxwell relations, determine a relation for $(\partial s / \partial v)_T$ for a gas whose equation of state is

$$P = \frac{RT}{v-h} - \frac{a}{v^2T}$$
. (10%)

(b) What is the Boyle temperature? (10%)

Problem 2 (10%)

- (a) If the pressure in an isentropic process is raised, does the enthalpy go up or down? (5%)
- (b) Is that independent upon the phase? (5%)

Problem 3 (10%)

An air-conditioner provides 1 kg/s of air at 15°C cooled from outside atmospheric air at 35°C. Estimate the amount of power needed to operate the air-conditioner. Clearly state all assumptions made. (10%)

Problem 4 (10%)

An approximation for the saturation pressure can be $\ln P_{\text{sat}} = A - B/T$, where A and B are constants. Which phase transition is that suitable for, and what kind of property variations are assumed? (10%)

Problem 5 (27%)

(a) Describe the physical meanings and SI units for the terms, v₀, k_{cat}, C_{ET}, C_S, and K_M, respectively in the Michaelis-Menten equation as given below. (10%)

$$v_0 = \frac{k_{cat} C_{ET} C_S}{K_M + C_S}$$

- (b) Describe the mechanism differences between (i) competitive inhibition, (ii) noncompetitive inhibition, and (iii) uncompetitive inhibition in enzyme kinetics. (6%)
- (c) Compare the kinetic characteristics of competitive inhibition with those of noncompetitive inhibition by "the Lineweaver–Burk plot $(1/v_0 vs. 1/C_8)$." (4%)
- (d) Derive the rate equation for an enzymatic reaction under uncompetitive inhibition, and prove that k_{cat}/K_M remains unchanged after introducing the uncompetitive inhibitor into the enzymatic reaction. (7%)

Problem 6 (23%)

- (a) Derive the design equation for a plug-flow reactor (PFR) carrying out an isothermal first-order homogeneous reaction and describe how to determine the space time (τ) for a PFR with a given volume (V) and a desired conversion (X). (8%)
- (b) By analogy to (a), derive the design equation for a packed-bed enzyme reactor carrying out a simple enzyme reaction that is govern by the Michaelis-Menten equation. (8%)
- (c) Describe briefly how to determine k_{cat} and K_M empirically according to (b)? And what factors may cause the deviations of k_{cat} and K_M measured from the theoretical values? (7%)

試題隨卷繳回