(每題10分,共10題)

- 1. Evaluate the integral $\int \delta \left[(x-a)(x-b) \right] f(x) dx$, where $\delta [\cdots]$ is the Dirac delta function and the range of integration includes the points a, and b ($a \neq b$). (10%)
- 2. If a vector \vec{F} is given by $\vec{F} = (x^2 + y^2 + z^2)^n (x\hat{e}_x + y\hat{e}_y + z\hat{e}_z)$, where \hat{e}_i is the unit vector along the *i* direction, find (a) $\nabla \cdot \vec{F}$. (5%) (b) $\nabla \times \vec{F}$. (5%)
- 3. Resolve the circular cylindrical unit vectors \hat{e}_{ρ} , \hat{e}_{φ} , and \hat{e}_{z} into their Cartesian components \hat{e}_{x} , \hat{e}_{y} , and \hat{e}_{z} . (10%)
- **4.** Evaluate the function of matrix $\exp\{i\sigma_2\theta\}$, where $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \text{ in which } i \text{ is the imaginary unit. (10\%)}$
- 5. For a resistance-inductance circuit Kirchhoff's law leads to the differential equation $L\frac{dI(t)}{dt}+RI(t)=V$ for the current I(t), where L is the inductance, R is the resistance, and V is the time-independent input voltage, all constant. If the initial condition is I(0)=0, find the solution of the current I(t). (10%)

- 6. Find the Fourier series expansion of the function f(x) = x in the specific interval $-\pi \le x \le \pi$. (10%)
- 7. Evaluate the integral $\int_0^{2\pi} \frac{d\theta}{1 2\alpha \cos \theta + \alpha^2}, \ \alpha \in (0,1).$ (10%)
- 8. Find the Fourier transformation of the function $f(t) = \sin \omega_0 t$, where ω_0 is a constant. (10%)
- 9. Find the Laurent series of the function of a complex variable

$$f(z) = \frac{1}{z^2(z-i)}$$
 in the intervals
(a) $0 < |z-i| < 1$, (5%) (b) $|z-i| > 1$. (5%).

10. Find the general solution of the partial differential

equation
$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, & x \in (0, l), \ t > 0, \\ u_x(0, t) = u_x(l, t) = 0, \ t > 0, \\ u(x, 0) = \varphi(x), & x \in (0, l), \end{cases}$$

where
$$u_x = \frac{\partial u}{\partial x}$$
. (10%)