107 VE 03

國立臺北科技大學 107 學年度碩士班招生考試

系所組別:1302 車輛工程系碩士班

自動控制 試題 (選考) 第二節

第一頁 共一頁

注意事項:

- 1. 本試題共5題,每題20分,共100分。

- 1. For the following mechanical system,

A. Find the transfer function
$$G(s) = \frac{X_1(s)}{F(s)}$$
. (10%)

B. Find the state equations representation of the system. (10%)

- 2. Reduce the following system to a single transfer function G(s) =
 - A. By the block diagram reduction method. (10%)
 - B. Convert the system into the form of signal flow graph. (5%)
 - C. Find the transfer function by Mason's gain formula. (5%)

3. For the following system

- A. Find K and α to yield a settling time of 0.2 second and a 30% overshoot. (10%)
- B. Find the time response c(t) when the input $R(s) = \frac{1}{s}$. (10%)

4. For the following system,

A. Find the range of gain, K, that will make the system stable.

(10%)

- B. Find the value of K that will make the system oscillate. Also, find the frequency of oscillation. (5%)
- C. What is the system type of this system? Find the corresponding error constant for the (5%)system.

- 5. If the Bode plot of $G(s) = \frac{K}{s(\pi s + 1)}$ is plotted as following,
 - A. Find the value of K and τ from the plot.

(15%)

(5%)

B. What is the bandwidth of this system.

