107CH03

國立臺北科技大學 107 學年度碩士班招生考試 系所組別:3510 化學工程與生物科技系化學工程碩士班甲組 第二節 化工熱力學與反應工程 試題 第一頁 共一頁

注意事項:

- 1. 本試題共五題,每題二十分,共100分。
- 2. 請標明大題、子題編號作答,不必抄題
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Consider the reaction mechanism:

$$i + S \rightarrow i \cdot S$$

$$w + S \rightarrow w \cdot S$$

$$i \cdot S + w \cdot S \rightarrow t \cdot S + S$$

$$t \cdot S \rightarrow t + S$$
(1)
(2)
(3)

Derive a rate law assuming:

- (a) (7%) The surface reaction is rate-limiting.
- (b) (6%) The adsorption of i is rate-limiting.
- (c) (7%) The surface reaction is rate-limiting and the reaction follows Eley-Rideal kinetics.
- $i \cdot S + w \rightarrow t \cdot S$ (hint: The reaction (2) and (3) should be modified or deleted.)
- 2. Consider the system with the reactors in series: PFR \rightarrow CSTR \rightarrow PFR, the entering molar flow rate (F_{A0}) is 50 kmol/h and the final conversion is 85%.

X	0.0	0.1	0.2	0.4	0.75	0.80	0.85
$-r_A (kmol/m^3 \cdot h)$	1.25	1.667	2.5	2.5	2.5	1.25	0.833

- (a) (10%) What are the reactor volumes if the two intermediate conversions (X_1 and X_2) are 40% and 60%, respectively?
- (b) (10%) What are the conversions X_1 and X_2 if all the reactors have the same volume?
- 3. Carnot cycle heat engine receives 300 kJ from reservoir at 300 °C, releases heat at 25 °C.
- (a) (8%)Calculate the work and the efficiency of the cycle.
- (b) (8%)Calculate the entropy change of the high-temperature and low temperature reservoirs.
- (c) (4%)Show the cycle on a T-S diagram. The working fluid is the system.

4. The enthalpy of a binary system of A and B at constant temperature and pressure is shown as follows.

$$H = 100 x_A + 200 x_B + x_A \cdot x_B (20 x_A + 10 x_B)$$

- (a)(6%) Determine expressions for $\overline{H_A}$ and $\overline{H_B}$ as a function of x_A .
- (b)(6%)Determine the numerical values of enthalpy for pure A and pure B.
- (c)(8%)Determine the numerical values of partial molar enthalpy for A and B at infinite dilution.
- 5. Components A and B comprising a binary system with vapor and liquid phases in equilibrium at temperature of 343.15 K. Activity coefficients for A and B are as follows.

$$ln(\gamma_A) = x_B^2$$
 and $ln(\gamma_B) = x_A^2$

Where x_A and x_B are the mole fractions of component A and B in the liquid phase, respectively. The saturated pressures are $P_A^{sat} = 60$ kPa and $P_B^{sat} = 30$ kPa. At $x_A = 0.4$, answer the following questions. Assume that the vapor phase is ideal.

- (a)(10%)The bubble pressure.
- (b)(10%)The vapor composition, y_A and y_B .