編號: 205

國立成功大學 107 學年度碩士班招生考試試題

系 所:電機資訊學院-微電、奈米聯招

考試科目:固態電子元件

第1頁,共2頁

考試日期:0205,節次:2

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. An n-type semiconductor is under thermal equilibrium and has an electron distribution of $n(x) = n_0 \exp(-x/L_n)$, where L is its length, n_0 and L_n are constant, and $0 \le x \le L$.
 - (a) Derive and sketch its potential distribution V(x) with the potential of Fermi level at x = 0 as the voltage reference. (10%)
 - (b) Find the ratio of drift currents at x = 0 and x = L. (5%)
- 2. Draw the possible energy band diagram of a Si pn junction under light irradiation ($hv > E_g$) in open-circuit condition. What could be the maximum value of the open-circuit voltage? Why? (15%)
- 3. Explain the "Schottky effect" and "Fermi level pining" which might occur in metal-semiconductor (MS) contacts, respectively. (10%)
- 4. Please use energy band diagram to explain why bipolar junction transistors (BJTs) could serve as a current amplifier. (10%)
- 5. Consider a planar N-channel MOSFET with a metal gate with work function $\Phi_{\text{metal}} = 4.61\text{V}$ fabricated on P-type silicon wafer with uniform doping concentration N_A=10¹⁷cm⁻³. The SiO₂ gate dielectric thickness (T_{ox}) is 1.5nm. The MOS transistor is 10µm wide (W) and 100nm long (L). The threshold voltage (V_t) at room temperature is 0.4V.
 - (a) How would V_t change if Φ_{metal} is increased to 4.81V (5%)?
 - A. Increases to 0.6V
 - B. Does not change
 - C. Decreases to 0.2V
 - D. Decreases by an amount that is smaller than 0.2V
 - (b) Which of the following statements is TRUE if T_{ox} is doubled (3.0nm) (5%)?
 - A. The body effect factor γ decreases
 - B. V_t increases
 - C. The gate capacitance C_{ox} increases
 - D. The flatband voltage V_{fb} decreases
 - (c) Which of the following statements is TRUE if we increase the doping concentration N_{λ} to 10^{18} cm⁻³ (5%)?
 - A. V. decreases
 - B. Punch-through will be larger (more severe)
 - C. Body effect factor y decreases
 - D. Mobility μ will be smaller (degraded)

编號: 205

國立成功大學 107 學年度碩士班招生考試試題

系 所:電機資訊學院-微電、奈米聯招

考試科目:固態電子元件

考試日期:0205,節次:2

第2頁,共2頁

- (d) Which of the following statements is TRUE if we replace the gate dielectric with HfON with relative dielectric constant ε_r=16 with twice the thickness of the original SiO₂ (5%)?
 - A. Punch-through will be larger (more severe)
 - B. The gate leakage current will be larger
 - C. The gate capacitance Cox increases
 - D. Mobility µ will be larger (better)
- 6. Consider the following transistor output characteristics

 V_{out}

- (a) If this set of curves were MOSFET drain current (in) versus drain voltage (vds) characteristics for different gate biases (vds), what is the <u>name</u> of the physical phenomenon responsible for the non-zero slope at high vds (5%)?
- (b) Following (a), explain the physical phenomenon that results in such non-zero slope (5%).
- (c) If the above set of curves were BJT collector current (i_C) versus collector voltage (ν_{CE}) characteristics for different base current (i_B), what is the <u>name</u> of the physical phenomenon responsible for the non-zero slope at high V_{ds} (5%)?
- (d) Following (c), explain the physical phenomenon that results in such non-zero slope (5%).
- (e) If the curves intersect at a negative voltage $-V_A$, express the output resistance (r_o) as function of V_A . Consider a BJT with collector current ico near the edge of saturation (5%).
- 7. List three possible ways to reduce short channel effects (which causes drain-induced barrier lowering, sub-threshold slope degradation, and Vt roll-off) in enhancement-mode MOSFETs (5%).