國立嘉義大學 107 學年度

電機工程學系碩士班招生考試試題

科目:電子學

(注意事項:1.可使用計算機。 2.依次序作答。)

- 1. Using the fact that a silicon diode has $I_{\rm S} = 10^{-15}$ A at 26.5°C and that $I_{\rm S}$ increases by 25% per 1°C rise in temperature, find the value of $I_{\rm S}$ at 200°C. (5%)
- 2. Assuming an ideal diode, consider the battery charging circuit in Fig. 1 with $V_{\rm m} = 20$ V, $R = 10 \Omega$ and $V_{\rm B} = 14 \text{ V}$.
 - (a) Find the percentage of each cycle in which the diode is in on state. (10%)

3. The transistor in the circuit of Fig. 2 has a very high β . Assume $V_{\text{BE}} = 0.7$ V.

- 4. An enhancement NMOS transistor is connected in the bias circuit of Fig. 3 with $V_{\rm G} = 4$ V and $R_{\rm S} = 1 \text{ k}\Omega$. The transistor has $V_{\rm t} = 2 \text{ V}$ and $k'_n(W/L) = 2 \text{ mA/V}^2$. (a) What bias current " I_D " results? (10%)
 - (b) If a transistor for which $k'_n(W/L)$ is 50% higher is used, what is the resulting current " I_D "? (10%)

5. The NMOS transistors in the circuit of Fig. 4 have $V_t = 1$ V, $\mu_n C_{ox} = 120 \,\mu \text{A/V}^2$, $\lambda = 0$, and $L_1 = L_2 = 1 \ \mu m$. Find required values to obtain the voltage and current values indicated. (a) Find the required value of gate width " W_1 " for Q_1 . (10%) (b) Find the required value of gate width " W_2 " for Q_2 . (10%) (c) Find the value of "R". (5%)

Fig. 4 6. Determine the current i_o for the circuit shown in Fig. 5. (10%)

7. Determine the voltage v_o for this circuit shown in Fig. 6. (10%)

Fig. 6