國立臺北科技大學 100 學年度碩士班招生考試

系所組別:3722 有機高分子研究所乙組

第二節 材料科學與工程 試題 (選考)

第一頁 共一頁

注意事項:

- 1. 本試題共6題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- Explain following term (use graph or give an example): (30%, each 6%)
- 1. Solid-solution hardening (strengthening)
- 2. Fracture toughness, $K_{\rm IC}$
- 3 Extrinsic semiconductor
- 4. 0.2 percent offset yield strength
- 5. Critical radius of a homogeneous nucleus

= (12%)

The electrical resistivity of pure germanium is 0.46 $\Omega \cdot$ m at 300 K. Calculate its electrical conductivity at 425°C. For germanium, the band energy gap, Eg = 0.67 eV. $k = 8.62 \times 10^{-5} \text{eV/K}$

三 (12%)

The diffusivity of copper atoms in the aluminum lattice is $7.50 \cdot 10^{-13}$ m²/s at 600° C and $2.50 \cdot 10^{-15}$ m²/s at 400° C.

Calculate the activation energy for this case in this temperature range $[R = 8.314 \text{ J/(mol \cdot K)}.]$

四 (18%, each 9%)

A 0.505-in -diameter aluminum alloy test bar is subjected to a load of 25,000 lb. If the diameter of the bar is 0.490in, at this load, determine (a) the engineering stress and strain and (b) the true stress and strain.

五 (12%, each 6%)

(a) What is Schmid's law (use graph and equation)? (b) What is critical resolved shear stress? Explain whether FCC metals or BCC metals have lower critical resolved shear stress.

六 (16%, each 8%)

An x-ray diffractometer recorder chart for an element that has either the BCC or the FCC crystal structure showed diffraction peaks at the following 2 theta angles:

- 41.069°, 47.782°, 69.879°, and 84.396°. (The wavelength of the incoming radiation was 0,15405 nm.)
- a) Determine the crystal structure of the element.
- b) Determine the lattice constant of the element