國立臺北科技大學 100 學年度碩士班招生考試

系所組別:1320 車輛工程系碩士班乙組

第一節 自動控制 試題

第一頁 共一頁

注意事項

- 1. 本試題共 4 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Consider an unstable system $\ddot{x} = x + u$, we want to control it now. Let $U(s) = \frac{K(s+a)}{s+10} X(s),$
 - (a) (10%) Select a and K so that the system will display a rise time of about 2 second, and no more than 25% overshoot.
 - (b) (15%) Sketch the root locus as K varies from $-\infty$ to 0 for your design.
- 2. A unity-feedback system with a cascade controller and precompensator is considered, the block diagram is shown in Fig. 1. Give a plant with transfer function $G(s) = \frac{(s-2)}{(s+1)(s-1)}$.

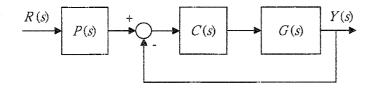
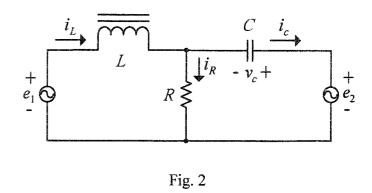


Fig. 1


- (a) (10%) Design the first-order C(s) such that the three poles of the overall system are -3, $-2\pm j$.
- (b) (15%) Design a precompensator such that the designed system in part (a) will track asymptotically step-reference inputs.

3. Consider the plant model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix} u = AX + Bu,$$

$$y = \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- (a) (10%) Design a full state observer to estimate the state of the plant, and describe the model of the observer. Place the eigenvalues of the observer at s=-15.
- (b) (10%) Using the plant model and the observer in the above, implement state feedback such that the roots of det[sI-A+BK] are located at s=-5. Determine the state model of the closed-loop system.
- (c) (10%) Evaluate the eigenvalues of the closed-loop system.
- 4. An RLC network is shown in Fig. 2. Define the state variable as $x_1(t)=i_L(t)$, $x_2(t)=v_c(t)$ and the outputs as $y(t)=v_c(t)$.

- (a) (10%) Determine the differential equations. (Using KCL and KVL)
- (b) (10%) Obtain the dynamical equation.