編號: 62

國立成功大學 107 學年度碩士班招生考試試題

系 所:太空與電漿科學研究所

考試科目:電磁學

考試日期:0205,節次:1

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- Calculation processes have to be shown.
- System of unit used in the problems of this examination is the SI unit.
- The characters shown below are used to represent the physical quantities: Current density: j, angular frequency: ω , magnetic field: B, electric field: E.
- Characters representing physical constants listed up below are available if necessary: Elementary charge: e [C], permittivity of vacuum: ε_0 [m⁻³ kg⁻¹ s⁴ A²](or [F·m⁻¹]), permeability of vacuum: μ_0 [m kg s⁻² A⁻²] (or [H·m⁻¹]), speed of light in vacuum: c [m s⁻¹].
- I. Electrostatic field (20 %)
 - i. A charged sphere S with uniform charge density ρ is located at r = 0, whose radius is R. Find the radial profile of the electric field E(r), for $0 < r \le R$ and $r \ge R$. (5%)
 - ii. Calculate the radial profile of the electrostatic potential $\phi(r)$, for $0 < r \le R$ and $r \ge R$. The boundary condition is given as $\phi \longrightarrow 0$ at $r \longrightarrow \infty$. (5%)
 - iii. Find the electrostatic energy U of the sphere S. (10 %)

編號: 62

國立成功大學 107 學年度碩士班招生考試試題

系 所:太空與電漿科學研究所

考試科目:電磁學

考試日期:0205,節次:1

第2頁,共4頁

II. Electric field in dielectric medium: (5 % each, total 25 %)

There is a point external charge Q at the center of a dielectric sphere, whose radius and dielectric constant (uniform in space inside the sphere) are a and ε , respectively (Fig. 1). Find the radial profiles of the electric flux density D, the electric field E, the electrostatic potential ϕ , the polarization charge density ρ_p , and the polarization surface charge density σ_p , respectively. The boundary condition is give as $\phi \longrightarrow 0$ at $r \longrightarrow \infty$. (Hint: the electric polarization P is expressed in a form P = P(r)r/r. Use the identity $\nabla \cdot (r/|r|^3) = 4\pi\delta(r)$, where $\delta(r)$ is the Dirac delta function.)

Fig. 1

國立成功大學 107 學年度碩士班招生考試試題

系 所:太空與電漿科學研究所

考試科目:電磁學

考試日期:0205,節次:1

第3頁,共4頁

III. Radiation from harmonic oscillation of an electric dipole: (25 %)

There is an oscillating electric dipole at the origin of a Cartesian coordinate (x, y, z), that can be expressed as an oscillation of electric current $I = z I_o \cos(\omega t)$, where z, I_o , ω and t are the unit vector in the z direction, the amplitude of the current, the angular frequency and time, respectively. In the long-wavelength and far-field limit in which the length l of the harmonic oscillator is much shorter than the wavelength of the radiated electromagnetic waves and r >> (the wavelength), the vector potential A and the electrostatic potential ϕ are given as

$$A = z \frac{\mu_0}{4\pi r} I_0 l \cos \left[\omega \left(t - \frac{r}{c}\right)\right],$$

$$\phi = \frac{c\mu_0}{4\pi} I_0 l \frac{z}{r^2} \cos \left[\omega \left(t - \frac{r}{c}\right)\right].$$

Here, $r = (x^2 + y^2 + z^2)^{1/2}$.

(i) Find the r, θ , and φ components of the electric field E in the spherical coordinate shown in Fig. 2 by calculating the r, θ , and φ components of A. Retain only terms proportional to r^{-1} by neglecting terms proportional to $r^{-1/2}$. (5 % × 3 = 15 %)

(ii) Find the radiation power per unit solid angle $P \equiv r^2 |\overline{S}|$ as a function of θ and draw the P vs θ graph, where $\overline{S} \equiv \frac{1}{T} \int_0^T \frac{E \times B}{\mu_0} dt$ is the time-averaged Poynting vector, where T is one period of the oscillation. The magnetic field B is given as $B = -\varphi \frac{\mu_0}{4\pi r} I_0 l \frac{\omega}{c} \sin \theta \sin \left[\omega \left(t - \frac{r}{c}\right)\right]$. (9 % + 1 % = 10 %)

Fig. 2

編號: 62

國立成功大學 107 學年度碩士班招生考試試題

系 所:太空與電漿科學研究所

考試科目:電磁學

考試日期:0205,節次:1

第4頁,共4頁

- IV. Derivation of the energy conservation equation of electromagnetic field in vacuum from Maxwell Eqs. (30 %)
 - i. Derive the following equation from Maxwell equations. The calculation process has to be clearly shown. Use the vector identity, $\nabla \cdot (A \times B) = B \cdot (\nabla \times A) A \cdot (\nabla \times B)$. (15%)

$$\frac{1}{2} \frac{\partial}{\partial t} \left[\varepsilon_0 \left| \vec{E} \right|^2 + \frac{\left| \vec{B} \right|^2}{\mu_0} \right] + \nabla \cdot \left[\frac{\vec{E} \times \vec{B}}{\mu_0} \right] = -\vec{j} \cdot \vec{E} \ .$$

ii. Explain physical meaning of each term of the equation derived in the above question in English. ($\frac{5}{x}$ 3 = 15 %)