國立高雄應用科技大學 100 學年度碩士班招生考試 機械與精密工程研究所(甲組)

准考證號碼□□□□□□□□ (考生必須填寫)

材料力學

試題共3頁, 第1頁

注意:a. 本試題共 5 題,每題 20 分,共100 分。

- b. 作答時不必抄題。
- C. 考生作答前請詳閱答案卷之考生注意事項。
- 1. The connection shown in the figure 1, consists of five metal plates, (plates on left side, each 5 mm thick, and plates on right side, each 8 mm thick) jointed by three 10 mm diameter bolts. The total load transferred between plates is 10 kN, distributed among the plates as shown.
 - (a) Calculate the largest shear stress in the single bolt, disregarding friction between the plates. (10%)
 - (b) Calculate the largest bearing stress acting against the single bolt. (10%)

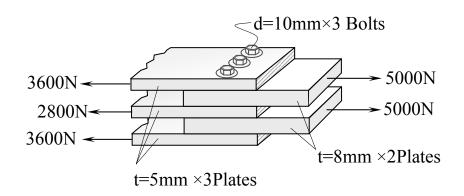


Figure. 1

- 2. A steel block with the original length L=200mm, height b=40mm and width a=60mm, subjected to an axial compression load P=400kN shown in the figure 2. After the P loading, if dimensions b and L are change to 40.02mm and 199.7 mm, respectively, calculate:
 - (a). Poisson's ratio.(5%) (b). The modulus of elasticity. (5%) (c). The final value of width a. (5%) (d). The modulus of shear elasticity. (5%)

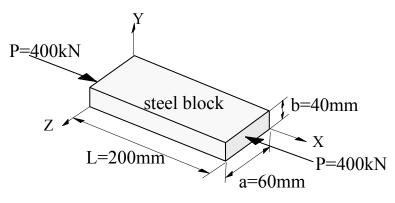


Figure. 2

- 3. Motor delivers 275hp at 1000rpm to the end of a shaft (see figure 3). The gear B and gear C take out 125hp respectively. (Assume G=11.5×10⁶psi for the material of the shaft)
 - (a) Determine the required diameter d of the shaft if the allowable shear stress is 7500psi. (10%)
 - (b) Determine the required diameter d if the allowable twist angle is limited under 1.5°. (10%)

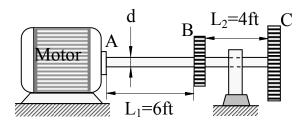


Figure. 3

4. The simple supported beam and triangular distributed load as figure 4 shown. Please use the method of singularity function to determine (a) The deflection of point C ($y_C=?$) (10%) (b) The angular of A($\theta_A=?$) (10%) (The modulus of elasticity is E)

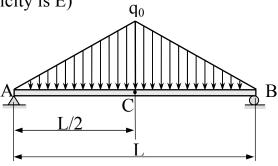


Figure 4

5. In figure 5.1, a steel bar is made by steel with S_y =220Mpa, wrench applied self-weight 10kg and a horizontal force F=300N, an axial loading P=500N was acted also. Determine (a) the σ_x and τ_{xy} of the element D on the surface of the circular bar which has the maximum stress as figure.5.3 shown. (5%) (b) The location of θ for the element D as figure.5.2 shown. (5%) (c) The safety factor n=? for the maximum shear stress theory. (5%) (d) The safety factor n=? for the distortion

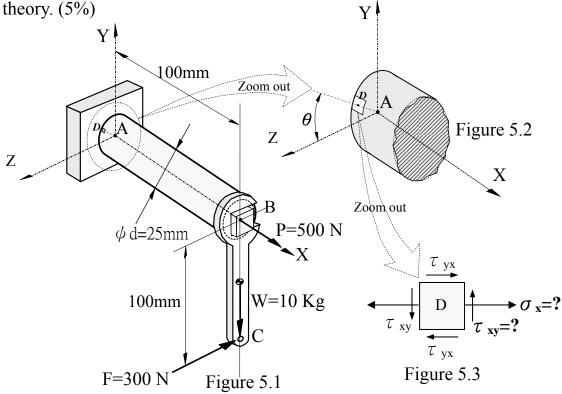


Figure 5