國立臺灣科技大學 107 學年度碩士班招生試題

系所組別:材料科學與工程系碩士班丙組

科 目:熱力學

(總分為 100 分)

1 (15%) Several thermodynamic properties of the changes between water (I) and ice (s) are $H_{H_2O(l)}$, $H_{H_2O(s)}$, $\Delta H_{H_2O(s \to l)}$, $\Delta S_{H_2O(s \to l)}$, and $\Delta G_{H_2O(s \to l)}$. Indicate that these properties are greater than, equal to, or smaller than zero at 298 K, 273 K, and 253 K. Set that the melting temperature of water/ice is 273 K.

	$H_{H_2O(l)}$	$H_{H_2O(s)}$	$\Delta H_{H_2O(s \rightarrow l)}$	$\Delta S_{H_2O(s \rightarrow l)}$	$\Delta G_{H_2O(s \rightarrow l)}$
298 K					
273 K					
253 K					

2 The A-B liquid solution obeys the relation of the activity coefficient of A in the A-B liquid solution at 400 K, as:

$$\ln \gamma_A = 0.8 X_B^2 - 0.5 X_B^3$$

- 2.1 (5%) Is the solution positive deviation or negative deviation from Raoultian solution?
- 2.2 (10%) Derive the activity coefficient of B in the A-B liquid solution.
- 2.3 (5%) Calculate the activity of B in the A-B liquid solution at $X_B = 0.5$.
- 3 The regular solution of A-B alloy shows:

$$\Omega=15000~J~mol^{-1}$$

- 3.1 (5%) Calculate that critical temperature of this solution.
- 3.2 (10%) There are two spinodal composition for the A-B solution at 500 K. Determine these two spinodal composition.

國立臺灣科技大學 107 學年度碩士班招生試題

系所組別:材料科學與工程系碩士班丙組

科 目:熱力學

(總分為 100 分)

- Calculate (a) the work done in mercury system as the external pressure changed from 0 to 10^8 N/m (5%) and (b) the change of internal energy. (10%) For mercury at 273K, α =1.18 × 10⁻⁴ K⁻¹, β =3.88 × 10⁻¹¹ m²/N, C_p =27.9 J/K·mole and V = 1.47×10⁻⁵ m³/mole. Assume these data are independent to pressure change.
- 5 Show that $(\frac{\partial S}{\partial P})_{SV} = \frac{C_P \beta}{T \alpha} V \alpha$, α is isobaric thermal expansivity and β is isothermal compressibility. (10%)
- 6 $\alpha_r = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$ is defined as thermal expansion coefficient, V is volume, T is temperature and P is pressure. Show (a) $\frac{\partial^2 G}{\partial P \partial T} = \alpha_T V$ (10%) and (b) $\left(\frac{\partial H}{\partial P} \right) = V(1 \alpha_T \gamma)$. (10%)
- 7 Which statement is correct for deal gases? (5%)

$$(A)\left(\frac{\partial U}{\partial V}\right)_T = 0$$
; (B) $\left(\frac{\partial H}{\partial V}\right)_S = 0$; (C) $\left(\frac{\partial U}{\partial T}\right)_V = 0$; (D) $\left(\frac{\partial H}{\partial S}\right)_P = 0$

