國立新竹教育大學 100 學年度碩，博士班招生考試試題

所別：應用數學系碩士班

科目：線性代數（本科總分：150 分）

※ 請横書作答

1．Given the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$
（a）Find the determinant of A．（6 points）
（b）Find the eigenvalues and the corresponding eigenvectors．（10 points）
（c）Find a matrix B such that $B^{-1} A B=D$ where D is diagonal matrix and write down the matrix D．（8 points）
（d）Find $A^{20}=$ ？（ 6 points）
2．Let $\mathrm{V}=\operatorname{span}(\mathrm{S})$ with the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t$ and $S=\{\sin t, \cos t, 1, t\}$ ．
（a）Apply the Gram－Schmidt process to the given S of the inner product V ．Find an orthonormal basis β for V．（10 points）
（b）If $h(t)=2 t+1$ ，then compute the Fourier coefficients of the given vector relative to β ． （10 points）

3．Let A and B be $n \times n$ matrices that are unitarily equivalent．
（a）Prove that $\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(B^{*} B\right) \cdot(8$ points $)$
（b）Prove that
1．$\sum_{i, j=1}^{n}\left|A_{i j}\right|^{2}=\sum_{i, j=1}^{n}\left|B_{i j}\right|^{2}$ ．（10 points）
（c）Show that the matrices

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & i
\end{array}\right] \text { and }\left[\begin{array}{ll}
i & 4 \\
1 & 1
\end{array}\right] \text { are not unitarily equivalent.(7 points) }
$$

4．Consider the following system of linear equation，

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2}+2 x_{3}-x_{4} & =0 \\
3 x_{1}+2 x_{2}+3 x_{3}-2 x_{4} & =0 \\
-x_{2}+x_{4} & =0
\end{aligned}\right.
$$

（a）Find the solution set W of the system of linear equation．（ 10 points．）
（b）Prove that W is a subspace for \mathbb{R}^{4} ．What is the dimension of W ？（ 10 points．）
（c）Find the solution set of the following nonhomogeneous system．（6 points．）

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2}+2 x_{3}-x_{4} & =6 \\
3 x_{1}+2 x_{2}+3 x_{3}-2 x_{4} & =6 \\
-x_{2}+x_{4} & =0 .
\end{aligned}\right.
$$

5．Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a function which is defined by

$$
T(A)=A B^{2}-B A
$$

where $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ ．Let $\alpha=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ be an ordered basis for $M_{2 \times 2}(\mathbb{R})$.
（a）Prove that T is a linear transformation from $M_{2 \times 2}(\mathbb{R})$ to $M_{2 \times 2}(\mathbb{R})$ ．（8 points．）
（b）Find bases for the null space $\mathrm{N}(T)$ and the range $\mathrm{R}(T)$ of T ．（10 points．）
（c）Compute the nullity and rank of T ．（6 points．）
（d）Compute $[T]_{\alpha}$ which is the matrix representation of T in the ordered basis α ．（6 points．）
（e）Compute the determinant $\operatorname{det}\left([T]_{\alpha}\right)$ ．（ 6 points．）
6．Let V be a vector space，and let $S_{1} \subseteq S_{2} \subseteq V$ ．
（a）Prove that if S_{1} is linearly dependent，then S_{2} is linearly dependent．（8 points．）
（b）Consider the set

$$
S=\{(1,0,0,-1),(5,0,3,-8),(0,0,1,-1),(5,3,-8,0)\}
$$

in \mathbb{R}^{4} ．Prove that S is linearly dependent．（5 points．）

