(107)輔仁大學碩士班招生考試試題

考試日期:107年3月9日第二節

本試題共 二 頁 (本頁為第 一 頁)

科目:電子學

系所組:電機工程學系

1. 選擇題 (30%): 請標明題號,作答於彌封答案卷內。

- (1) The most populate materials for the semiconductor devices are (A) Si and Ge (B) Fe and Pb (C) I and Na (D) C and S
- (2) When the density of charge carriers in a piece of semiconductor is not uniform. The generated current is caused by (A) drift (B) diffusion (C) doping (D) ion implantation.
- (3) How to forward-bias a *p-n* junction? (A) Both sides connect to positive voltage. (B) Both sides connect to negative voltage. (C) The *n* side connects to positive voltage and the *p* side connects to negative voltage. (D) The *p* side connects to positive voltage and the *n* side connects to negative voltage.
- (4) In the BJT's active mod, i_C shows a slight dependent on v_{CE} . This phenomenon is called (A) Miller effect (B) Early effect (C) Hall effect (D) Junction effect
- (5) Which one cause the gain falling off at high-frequency band of a discrete-circuit amplifier. (A) coupling capacitors (B) Miller effects (C) internal parasitic capacitors (D) bypass capacitors.
- (6) Which one is the Darlington Configuration? (A) CC-CE (B) CD-CS (C) CD-CE (D) CC-CC.
- (7) Which one is the property of the negative feedback in amplifier design? (A) Sensitize the gain. (B) Induce nonlinear distortion. (C) Extend the bandwidth. (D) Enlarge openloop gain.
- (8) For the following MOS configurations, which one has the wide bandwidth by proper design? (A) CS (B) CG (C) CD (D) CS with degeneration
- (9) For a transresistance amplifier, its topology is (A) Series-shunt (B) Series-series (C) Shunt-shunt (D) Shunt-series.
- (10) Which circuit is **not** unconditional stable when applied as the feedback amplifier? (A) STC circuit (B) Amplifier with single pole (C) Amplifier with two poles (D) Amplifier with three poles.
- 2. In each of the ideal-diode circuit shown in Fig.1, v_l is a 1-kHz 10-V amplitude sin wave. Sketch the waveform resulting at v_o for 2 periods. What are its positive and negative peak values? (10%)

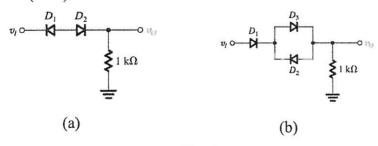


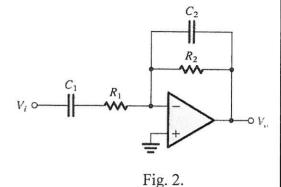
Fig. 1.

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。

(107)輔仁大學碩士班招生考試試題

考試日期:107年3月9日第二節

本試題共 二 頁 (本頁為第 二 頁)


科目:電子學

系所組:電機工程學系

3. Derive the transfer function of the circuit in Fig.2 (for ideal op amp) and show that it can be written in that form

$$\frac{V_o}{V_i} = \frac{-R_2/R_I}{[1+(\omega_I/j\omega)][1+j(\omega/\omega_2)]}$$

where $\omega_I=1/C_1R_1$, and $\omega_2=1/C_2R_2$. Assuming that the circuit is designed such that $\omega_2>>\omega_1$, find approximate expression for the transfer function in the following frequency region: (20%)

- (1) $\omega \ll \omega_l$
- (2) $\omega_1 << \omega << \omega_2$
- (3) $\omega \gg \omega_2$
- 4. Consider an MOS IC CS amplifier fed with a source V_{sig} having R_{sig} =0 and having an effective load resistance R'_L composed of r_o of the amplifier transistor in parallel with an equal resistance r_o of the current-source load. (20%)
 - (1) Sketch the high frequency small signal equivalent circuit, and find $V_o(s)/V_{sig}(s)$.
 - (2) Sketch the Bode plot for the gain of circuit in 4.(1).
 - (3) Let $g_m=1.2$ mA/V, $r_o=20$ k Ω , $C_{gs}=20$ fF, $C_{gd}=5$ fF, and $C_L=25$ fF, find A_M , f_H , f_t , and f_z .
- 5. The operational amplifier in Fig.3 has open-loop gain of 10^6 , input resistance of $100 \text{ k}\Omega$ and output resistance of $1\text{k}\Omega$. As $R_L=2\text{k}\Omega$, $R_I=1\text{k}\Omega$, $R_2=1\text{M}\Omega$, and $R_s=10\text{k}\Omega$, find the closed loop gain V_o/V_s , input resistance R_{in} and the output resistance R_{out} of Fig. 3 by using the feedback analysis. (Hint: You **cannot** regard the op amp as ideal.) (20%)

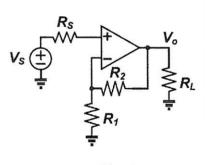


Fig. 3.

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。