是否使用計算機:是

系所:

科目:統計學

經營管理研究所(無組別)

考試時間:100分鐘

本科原始成績:100分

I. (60%)MULTIPLE CHOICE QUESTION

所有的答案請寫在答案卷,答案寫法如下列所示:

All answers must be written on the answer sheet

for example:

1	a	6	a	11	d	16	a
2	b	7	b	12	d	17	a
3	c	8	С	13	b	18	c
4	d	9	d	14	c	19	c
5	a	10	a	15	d	20	c

- 1. Which of the following statements on a simple OLS regression function $\hat{Y} = \hat{\alpha} + \hat{\beta}X$ is true?
- a) If more samples are added to estimate the regression function, then the variance of $\hat{\beta}$ will increase.
- b) Coefficient of determination R^2 is equal to the correlation coefficient of the sample value Y and its fitted value \hat{Y} .
- c) For $\hat{\beta}$ to be unbias, the error terms should have the same variance for any given X.
- d) To get $\hat{\beta}$, the sample variance of X should be greater than zero.
- 2. Fourth moment of a normalized random variable is to measure the ______of the distribution.
- a) kurtosis
- b) skewness
- c) symmetry
- d) biasness
- 3. Which of the following statements about normal distribution is **not** true?
- a) It is a symmetric distribution.
- b) Linear combination of two independent normal distributed random variables with the same mean and variance is also a normal distribution.
- c) Standard normal distribution has zero mean and variance.
- d) Sum of the square of three standard normal distributions is a chi-square distribution.
- 4. Which of the following statements about binomial distribution is true?
- a) It is a symmetric distribution.
- b) Its mean and variance are equal.

系所:

科目:統計學 經營管理研究所(無組別) 是否使用計算機:是

考試時間:100分鐘 本科原始成績:100分

c) Value of the random variable needs to be strictly positive.

- d) Binomial distribution sometimes asymptotically approaches Poisson distribution.
- 5. Which of the following statements about a *F* distribution is true?
- a) It is an asymmetric distribution.
- b) Value of the random variable can be negative.
- c) It is a ratio of two standardization normal distributions.
- d) The shape of its probability density curve is unrelated to the degree of freedoms.
- 6. Which of the following statements about *p*-value is true?
- a) It is negatively related to the significant level.
- b) The lower the *p*-value the more likely it is to reject null hypothesis.
- c) It is positively related to the value of the parameter in null hypothesis.
- d) P-value is only used in t-test.
- 7. The covariance of two independent random variables X and Y is **not** equal to
- a) 0
- b) E(X E(X)(Y E(Y))
- c) E[(X E(X)Y]
- d) E(XY)
- 8. Which of the following distributions can be used to test whether the population means of two random variables are equal?
- a) F distribution
- b) Chi-square distribution
- c) Poisson distribution
- d) Laplace distribution
- 9. The coefficient of determination R^2 of an OLS simple regression function is equal to
- a) square of the correlation coefficient of explained variable and fitted value
- b) square of slope coefficient
- c) square of the correlation coefficient of explanatory variable and fitted value
- d) square of the correlation coefficient of explanatory variable and residual

系所:

科目:統計學

經營管理研究所(無組別)

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

- 10. When we use n random samples (X_i, Y_i) to obtain the OLS regression function $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$, we already know the sample variance of X and Y are 400 and 160, respectively and the coefficient of determination R^2 is 0.1, then the estimator $\hat{\beta}$ is
- a) 0.2
- b) 0.25
- c) 0.3
- d) 0.4
- 11. In a simple OLS regression function, which of the following distribution can be used to test whether X has a significant impact on Y?
- a) binomial distribution
- b) chi-square distribution
- c) F distribution
- d) Poisson distribution
- 12. *P*-value is the _____significant level at which we could carry out the test and still fail to reject null hypothesis.
- a) smallest
- b) largest
- c) medium
- d) optimal
- 13. Which of the following distribution has equal mean and variance?
- a) binominal distribution
- b) Poisson distribution
- c) chi-square distribution
- d) exponential distribution.

14. If
$$V(X) = 20$$
, $V(Y) = 40$, $COV(X,Y) = -10$, then $V(\frac{2X + 3Y}{4}) =$

- a) 10
- b) 20
- c) 27.5
- d) 35

系所: 科目:統計學

經營管理研究所(無組別)

考試時間:100分鐘 本科原始成績:100分

是否使用計算機:是

15. Let *S* denote the prison sentence in month, for people convicted of motorcycle theft in Kaoshiung City. Suppose that the probability density function of *S* is given by $f(s) = \frac{s^2}{72}$,

 $0 \le s \le 6$. The expected prison sentence is

- a) 3 months
- b) 3.5 months
- c) 4 months
- d) 4.5 months
- 16. If \overline{X} is an unbias and consistent estimator of μ , and Y is a random variable with zero mean and constant variance, then $Z = \overline{X} + Y$ is a (an)_______ estimator of μ .
- a) unbias and consistent
- b) unbias but inconsistent
- c) bias but consistent
- d) bias and inconsistent
- 17. Which of the following statements about the property of an estimator is true?
- a) Unbias assures consistent.
- b) Consistent assures unbias.
- c) The number of unbias estimator is no more than that of consistent estimator.
- d) There may be more than one unbias and consistent estimator.
- 18. If we use $\sum X_i \hat{U}_i = 0$ to estimate the equation $Y_i = \beta X_i + U_i$ where \hat{U}_i is the residual, and

 $\hat{\beta}$ as the estimator of β , then

a) $\hat{\beta}$ is a bias estimator of β .

b)
$$\hat{\beta} = \frac{\sum X_i Y_i}{\sum (X_i - \overline{X})^2}$$
.

- c) $\sum \hat{Y}_i \hat{U}_i = 0$ does not hold.
- d) the regression line does not pass through $(\overline{X}, \overline{Y})$.

系所:

科目:統計學

經營管理研究所(無組別)

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

- 19. Let Y_1 , Y_2 , Y_3 , Y_3 be independently samples from a population with mean μ and variance σ^2 . Which of the following estimators of μ is most efficient than the others
- a) Y_1
- $b) \quad \frac{Y_1 + Y_2}{2}$
- c) $\frac{Y_1 + Y_2 + Y_3 + Y_4}{4}$
- d) $\frac{1}{8}Y_1 + \frac{1}{4}Y_2 + \frac{1}{4}Y_3 + \frac{3}{8}Y_4$
- 20. $\{X_1, X_2, \dots, X_n\}$ is independently sampled from a population with mean μ and variance σ^2 .

If $\hat{\sigma}^2 = \frac{(X_1 - \mu)^2}{6} + \frac{(X_2 - \mu)^2}{3} + \frac{(X_3 - \mu)^2}{2}$ is an estimator of σ^2 , then $\hat{\sigma}^2$ is an ______

- estimator of σ^2 .
- a) unbias and consistent
- b) unbias but inconsistent
- c) bias but consistent
- d) bias and inconsistent
- II. (20%) Assume that X has a linear impact on Y in the population as $Y = \alpha + \beta X + \varepsilon$. If we have 86 random samples of (X,Y), and have $S_{XY} = 16$, $\overline{X} = 12$, $\overline{Y} = 16$, $S_X = 8$, $S_Y = 5$.
 - (a) What's the OLS regression function $\hat{Y} = \hat{\alpha} + \hat{\beta}X$? The coefficient of determination R^2 ? Does X have significant impact on Y? ($\alpha = 0.05$).

hint:
$$P(t > t_{84,\alpha=0.05} = 1.663) = 0.05 \cdot P(t > F_{1,84,\alpha=0.05} = 3.95) = 0.05 \cdot$$

$$P(\chi > \chi_{84,\alpha=0.05} = 64.749) = 0.05$$
.

(b) If we use the same samples but new variable $Y^* = 100Y$, $X^* = 10X$ to obtain the new OLS regression function, what's the new regression function? R^2 of the new regression function?

科目:統計學

系所:

考試時間:100分鐘

經營管理研究所(無組別)

是否使用計算機:是

本科原始成績:100分

III. (10%) In II, if we use the same samples to estimate the new function $Y = \alpha_1 + \beta_1(X_i - \overline{X}) + \varepsilon_1$, then what's the OLS regression function? R^2 ?

IV. (10%)Assume that the population equation is $y = \beta_0 + \beta_1 x + u$, and meets the first four Gauss-Markov assumptions, $E(u \mid x) = 0$, $Var(u \mid x) = \sigma^2$. If we transform x_i to be

 $z_i = \ln(2x_i^2 + 3)$, and use $\tilde{\beta}_1 = \frac{\sum_{i=1}^n (z_i - \bar{z})y_i}{\sum_{i=1}^n (z_i - \bar{z})x_i}$ to estimate β_1 , try to find out the follows:

- (a) $E(\widetilde{\beta}_1) = ?$
- (b) $Var(\widetilde{\beta}_1) = ?$