國立高雄大學 107 學年度研究所碩士班招生考試試題

系所:應用數學系

科目:線性代數

身份別:一般生應用數學組、在

考試時間:100分鐘

職生應用數學組

是否使用計算機:否

本科原始成績:100分

Notations.

 $P_n(R)$: the set of all polynomials of degree at most n with coefficients from R.

 $M_{m\times n}(R)$: the set of all $m\times n$ matrices with entries from R.

N(T): the null space of T.

 $\det(A)$: the determinant of the matrix A.

 $W_1 + W_2 = \{u + v : u \in W_1 \text{ and } v \in W_2\}.$

Part I (15) Label the following statements as True (T) or False (F).

1. The empty set is linearly dependent.

- 2. If $T, U: \mathbb{R}^2 \to \mathbb{R}$ are both linear and T(1,1) = U(1,1) and T(1,-1) = U(1,1)U(1, -1), then T = U.
- 3. The function $T: M_{3\times 3}(R) \to R$ defined by $T(A) = \det(A)$ is a linear transformation.
- 4. For every matrix $A \in M_{6\times 6}(R)$, $\det(-A) = -\det(A)$.
- 5. Similar matrices always have the same eigenvalues.

Part II Answer the following questions. To get full credit you must show all work!

- 1. $W_1 = \{(a,0) : a \in R\}$ and $W_2 = \{(0,a) : a \in R\}$ are two subspaces of R^2 .
 - (a) (8) Is $W_1 \cup W_2$ a subspace of \mathbb{R}^2 ?
 - (b) (7) Find $W_1 + W_2$.
- 2. (10) Find all scalars a, if any exist, such that $x^2 + 1$, $2x^2 + ax + 3$, and $2x^2 + 3x + 1$ are linearly independent vectors in $P_2(R)$.
- 3. (10) Let T be the linear operator on \mathbb{R}^2 that rotates each vector in the plane through an angle of $\pi/2$. Determine whether T is diagonalizable or
- 4. (10) Let V and W be vector spaces, and let $T: V \to W$ be a linear transformation. Show that T is one-to-one if and only if $N(T) = \{0\}$.
- 5. (10) Let A be an $n \times n$ matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ with corresponding multiplicities m_1, m_2, \cdots, m_k . Find $\det(A)$.
- 6. (15) Let $A = \begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{pmatrix}$. Find rank(A).
- 7. (15) Find the general solution to the system of differential equations below

$$x' = 8x + 10y,$$

$$y' = -5x - 7y.$$