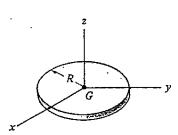
編號: 130

國立成功大學 107 學年度碩士班招生考試試題


系 所:系統及船舶機電工程學系

考試科目:動力學 考試日期:0205,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Show that the mass moment of inertia respect to the z axis of a thin circular disk is, $I_{zz} = \frac{mR^2}{2}$, Fig. 1a, and for a sphere is $I_{zz} = \frac{2}{5}mR^2$, Fig.1b, where the m represents the mass of the thin disk or the sphere. Hint: density is ρ , and m= ρ V (20%)

Thin circular disk

$$I_{xx} = I_{yy} = \frac{1}{4}mR^2 \qquad I_{zz} = \frac{1}{2}mR^2$$
 Fig. 1a

Sphere

$$I_{xx} = I_{yy} = I_{zz} = \frac{2}{5} mR^2$$

Fig. 1b

2. The ball of mass m and radius r is cast onto the horizontal surface such that it rolls without slipping. Determine the minimum speed v_G of its mass center G so that it rolls completely around the loop of radius R+r without leaving the track. See Fig. 2. (20%)

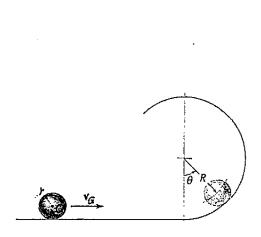


Fig. 2

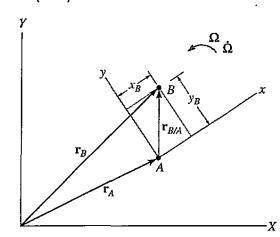


Fig.3

3. As shown in Fig. 3, the base point A represents the origin of the x, and y coordinate system, which is assumed to be both translating and rotating at angular velocity Ω and angular acceleration $\dot{\Omega}$ with respect to the X and Y system. **Derive** the formulas representing the **absolute velocity and acceleration of B** in terms of the absolute velocity \mathbf{V}_A and the acceleration \mathbf{a}_A of A, relative position vector, relative velocity and relative acceleration of B to A, $\mathbf{r}_{B/A}$, $\mathbf{V}_{B/A}$ and $\mathbf{a}_{B/A}$, respectively. (20%)

編號: 130

國立成功大學 107 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:動力學 考試日期:0205,節次:2

第2頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

4. Consider a system that gains mass. (a) Derive the equation of motion for the system shown by Fig. 4a. Notice that $v > v_i$. (b) A chain of length l, Fig. 4b, has a mass m. Determine the magnitude of force F required to raise the chain with a constant speed v_c starting from rest when y=0. (20%)

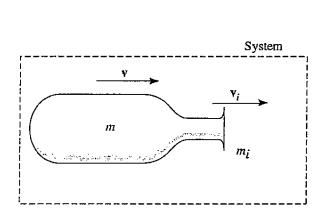


Fig. 4a

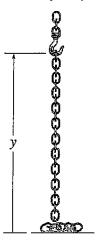


Fig. 4b

5. If the link AB is rotating at $\omega_{AB} = 3 \ rad \ / \ s$, determine angular velocities of links BC and CD at the instant shown. See Fig. 5. (20%)

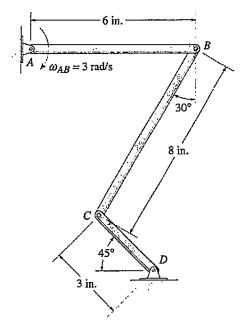


Fig. 5