國立高雄師範大學 100 學年度碩士班招生考試試題

(請用藍、黑色筆作答,以其他顏色或鉛筆作答者不予計分)

系所別:電子工程學系

科 目:電子學(第1頁,共2頁)

- 1. (a) Explain the Early Effect in BJT. (5%)
 - (b) How to decrease the effect? (5%)
- 2. In Si material, the electron and hole mobility are μ_n and μ_p , respectively. Which value is the larger? Please explain it. (5%)
- 3. In Fig.1, $V_{CC} = 10 \text{ V}$, $R_B = 930 \text{ K}\Omega$, $R_C = 10 \text{ K}\Omega$, $\beta = 150$, find emitter current I_E , input impedance Z_i , current gain A_i , and voltage gain A_V . (15%)
- 4. The NMOS and PMOS transistors in Fig.2 are matches with

 $k_n'(W_n/L_n) = k_p'(W_p/L_p) = 1mA/V^2$ and $V_{tn} = -V_{pn} = 1V$. Assuming $\lambda = 0$ for the both devices, find the drain currents i_{DN} , i_{DP} and the voltage v_0 for $v_I = 0$, +2.5V, and -2.5V. (20%)

- 5. For the MOS differential pair with a common-mode voltage v_{CM} applied, as shown in Fig.3, let $V_{DD}=V_{SS}=2$ V, $k'_n(W/L)=4$ mA/V², $V_t=0.7$ V, I=0.6 mA, and $R_D=2.5$ k Ω , and neglect channel-length modulation.
 - (a) Find V_{GS} for each transistor. (4%)
 - (b) For $v_{CM} = +1$ V, find v_s , i_{DI} , and v_{DI} . (6%)
 - (c) What is the highest value of v_{CM} for which Q1 and Q2 remain in saturation? (4%)
 - (d) If current source I requires a minimum voltage of 0.4 V to operate properly, what is the lowest value allowed for v_s and hence for v_{CM} ? (4%)

(背面有題)

系所別:電子工程學系

科 目:電子學(第1頁,共2頁)

- 6. Consider the circuit of Fig.4 for the case: $I=200 \mu A$ and $V_{OV}=0.25 \text{ V}$, $R_{\text{sig}}=200 \text{ k}\Omega$, $R_D=50 \text{ k}\Omega$, $C_{gs}=C_{gd}=1 \text{ pF}$.
 - (a) Find the dc gain. (4%)
 - (b) Find the high-frequency poles. (6%)
 - (c) Find an estimate of f_H . (4%)
- 7. For the circuit of Fig.5, the op amp has open-loop gain $\mu=10^4$ V/V, $R_{id}=100$ k Ω , and $r_o=1$ k Ω . Use the feedback method to find:
 - (a) The voltage gain V_0/V_S . (5%)
 - (b) The input resistance R_{in} . (4%)
 - (c) The output resistance R_{out} . (4%)
- 8. Sketch a pseudo-NMOS realization for the function $Y = \overline{A(B+CD)}$. (5%)

 $\begin{array}{c|c} & & & & \\ \hline = & & \\ \hline R_s=1 \text{ k}\Omega & & \\ \hline V_s & & \\ \hline \end{array}$

Fig.5