國立高雄師範大學 100 學年度碩士班招生考試試題

(請用藍、黑色筆作答,以其他顏色或鉛筆作答者不予計分)

系所別:數學系

科 目:分析(包括微積分、高等微積分、複變數函數)(第1頁,共2頁)

- 1. Find $\lim_{x \to \infty} \left(\frac{b^x a^x}{a^{x-1}x(b-a)} \right)^{1/x}$, where a > 0, b > 0, and $a \ne b$. (10%)
- 2. Show that $\int_{2}^{\infty} e^{-\frac{(x-2)^2}{3}} dx = \frac{\sqrt{3\pi}}{2}$. (10%)
- 3. Use the mean value theorem to show that $10\sqrt{x+3} < x+24$ if x > 46. (10%)
- 4. Define $f_n: [-1,1] \to R$ by $f_n(x) = \sum_{k=1}^n \frac{x^k}{k2^k}$, $\forall x \in [-1,1]$; (a) Is $\{f_n\}_{n=1}^\infty$ uniformly Cauchy? Give your reason \circ (b) If the answer of (a) is yes, does there exist a function $f: [-1,1] \to R \ni f_n$ converges to f uniformly? (10%)
- 5. Determine that if the improper integral $\int_0^{\pi/2} \ln \sin x dx$ converges? If this is yes, find its value. (10%)
- 6. Assume that $S \subset \mathbb{R}^n$ and S is compact (i.e. every open covering of S contains a finite subcover) Prove that S is closed and bounded in \mathbb{R}^n . (10%)

7. Let
$$x_1 = \sqrt{2}$$
, $x_{n+1} = \sqrt{\frac{2x_n}{x_n + 1}}$. Prove that $\prod_{n=1}^{\infty} x_n = \frac{\pi}{2}$, where $\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \cdots \times n$. (10%)

8. Let two functions f and g be analytic inside and on the simple closed contour $\Gamma \subset \mathbb{C}$.

Prove that if f(z) = g(z) for all z on Γ , then f(z) = g(z) for all z inside Γ . (10%)

(背面有題)

系所別:數學系

科 目:分析(包括微積分、高等微積分、複變數函數)(第2頁,共2頁)

9. Evaluate

$$\int_{\Gamma} \frac{e^{iz}}{\left(z^2+1\right)^2} dz$$

where Γ is the circle |z|=3 traversed once counterclockwise. (10%)

10. Compute

$$\int_{\Gamma} \frac{\cos z}{z^2 (z-3)} dz$$

along the contour $\,\Gamma\,$ indicated in the following figure: (10%)

