國立高雄師範大學 100 學年度碩士班招生考試試題

(請用藍、黑色筆作答,以其他顏色或鉛筆作答者不予計分)

系所別:數學系

科 目:代數(包括線性代數及代數學)(第1頁,共2頁)

- 1. Let R be the set of all real numbers and let C be the set of all complex numbers.
 - (1) Let $V = \mathbb{C}^2$, $F = \mathbb{R}$, Is V is a vector space with the operations of coordinatewise addition and multiplication? Why? (5%)
 - (2) Let $V = \mathbb{R}^2$, $F = \mathbb{C}$, Is V is a vector space with the operations of coordinatewise addition and multiplication? Why? (5%)
- 2. Let $V = \mathbb{R}^2$, Define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, a_2)$. Does the identity of addition exist? If exists, find it. (5%)
- 3. Let *V* and *W* be vector spaces and $T: V \to W$ be linear. Show that $R(T) = \{T(x) \mid x \in V\}$ is a subspace of *W* and $N(T) = \{x \in V \mid T(x) = 0\}$ is a subspace of *V*. (10%)
- 4. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, T(1,0) = (1,4), T(1,1) = (2,5). What is T(2,3)? Is T one-yo-one? (5%)
- 5. Let $A, B \in M_{n \times n}(F)$ such that $AB = I_n$. Prove that A and B are invertible and $B = A^{-1}$. (10%)
- 6. If a < 0, is $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ a & 0 & 0 & 0 \end{bmatrix}$ diagonalizable over R? Why? (10%)
- 7. Let *N* be a normal subgroup of a finite group *G*.
 - (1) If the order |N| and the index [G:N] are relatively prime, show that any element $g \in G$ satisfying $g^{|N|} = 1$ must be in N. (10%)
 - (2) If *H* is a subgroup of *G* such that |N| and [G:H] are relatively prime, show that $N \subseteq H$. (10%)

(背面有題)

系所別:數學系

科 目:代數(包括線性代數及代數學)(第2頁,共2頁)

- 8. (1) Show that for all $n \ge 2$ and all primes p, $x^n p$ is irreducible over \mathbb{Q} , the field of rational numbers. (10%)
 - (2) Show that the degree of the field extension $\mathbb C$ over $\mathbb Q$ is infinite. (10%)
- 9. Determine all ring-homomorphisms from $\mathbb{Z} \oplus \mathbb{Z}$ to \mathbb{Z} . (10%)