國立交通大學 107 學年度碩士班考試入學試題

科目:近代物理(4013)

科目:近代物理(4013) 考試日期:107年2月1日 第 3 節 系所班別:電子物理學系 組別:電物系甲組 第 / 頁,共 / 頁 【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

共五題,合計 100 分

- 1. Why is Bohr's atomic theory referred to as the old quantum theory? (10%)
- 2. The following experiments challenged concepts of classical physics. For each experiment, <u>state</u> the experimental setups, the results, and the exploration.
 - (a) The Franck-Hertz experiment. (12%)
 - (b) The Stern-Gerlach experiment. (13%)
- 3. Suppose that light of total intensity 1.0mW/cm² falls on a clean Aluminum plate of 30.cm² in area. The spot size of the light is 3.0cm². Assume that the plate reflects 90% of the light and that only 6.63% of the absorbed energy lies in the violet region of the spectrum above the cutoff frequency.
 - (a) Find the actual intensity available for the photoelectric effect. (5%)
 - (b) Assuming that all the photons in the violet region have an effective wavelength of 250nm and one photon produces one electron, *calculate* the current in the phototube (in amperes). (5%)
 - (c) <u>Find</u> the stopping voltage V_s for Aluminum if the photoelectrons are produced by the DUV light (λ =248nm). The work function φ for Aluminum is 4.1eV. (5%)

Note: physical constants: $h=6.63\times10^{-34}$ Js, $e=1.6\times10^{-19}$ coulomb, and $c=3.0\times10^8$ m/s; hc=1240 eVnm.

3D simple harmonic oscillator (3D-SHO)

4.I. Consider a particle of mass m in a 3D simple harmonic oscillator whose Hamiltonian is given

by
$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2(x^2 + y^2 + z^2)$$
. (20%)

- (a) Find the eigen energy of the first excited states.
- (b) Find the energy and degeneracy of the second excited states.
- 4.II. Following the SHO-problem above, consider the initial wave function,

$$\Psi(x,t=0) = A \left[\varphi_{100}(x) + e^{i\frac{\pi}{4}} \varphi_{200}(x) \right]$$
, prepared at $t=0$ in the 3D-SHO system, where $\varphi_{100}(x)$ denotes the

wave function of the <u>ground state</u> and $\varphi_{200}(x)$ is that of one of the <u>first excited states</u>. (15%)

- (c) \underline{Find} the normalization constant A.
- (d) Write down the general expression for the time-dependent wave function at any later time instant, $\Psi(x,t)$.

Operators

The hermitian conjugate (or adjoint) of an operator \hat{A} is the operator \hat{A}^{\dagger} such that $\langle f | \hat{A}g \rangle = \langle \hat{A}^{\dagger} f | g \rangle$ (for all wave functions f and g).

An operator is hermitian if $\hat{A} = \hat{A}^{\dagger}$.

Accordingly, <u>show</u> that the linear momentum operator $\hat{p} = \frac{\hbar}{i} \frac{d}{dx}$ is hermitian. (15%)