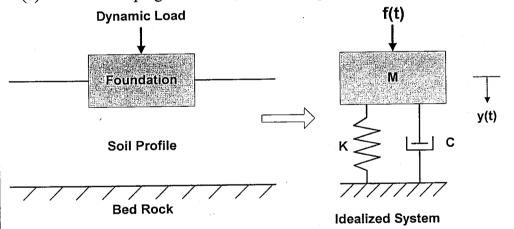
國立交通大學 107 學年度碩士班考試入學試題

科目:工程數學(3101)

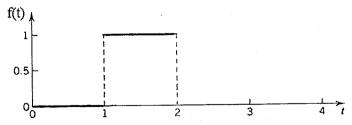
考試日期:107年2月2日 第1節

系所班別:土木工程學系

組別:土木系丁組一般生


第/頁,共之頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!


- 1. (a) For the linear differential equation y'' + y = 0, find a solution assuming y(x) in the form of $y(x) = \sin(\lambda x)$. (5%)
 - (b) Find another independent solution using the method of reduction of order. (10%)
 - (c) From the solutions in (a) and (b), what can you say about the general solution for y'' + y = 0? (5%)
- 2. When analyzing the vibration of a foundation subjected to a dynamic loading, it can be idealized as a mass-spring-damper system as shown in the following figure. The equivalent mass, damper, and spring constants are represented by M, C, and K in the governing differential equation

$$My'' + Cy' + Ky = f(t)$$

- (a) Find the condition of critical damping for free vibration (f(t)=0). (5%)
- (b) For underdamping conditions, find the frequency of free vibration. (5%)

3. The above idealized system has an **impulse response** $h(t) = e^{-t}$. Assume the initial conditions y(0)=y'(0)=0. Find the response y(t) for the applied force f(t) as shown below. (10%)

Hint: Impulse response h(t) is the response y(t) excited by a unit impulse f(t)= δ (t). In this case, h(t) is the solution y(t) for my"+cy'+ky= δ (t), y(0)=y'(0)=0.

- 4. One instance of logistic equation is $dy/dt = y 2y^2$.
 - (a) Show (prove, not confirm) that the general solution is $y(t) = \frac{1}{2+ce^{-t}}$, where c is constant. (5%)
 - (b) Confirm that the equation y(t)=1/2 is a solution. Is this a particular solution or singular solution?

國立交通大學 107 學年度碩士班考試入學試題

科目:工程數學(3101)

考試日期:107年2月2日 第 1 節

系所班別:土木工程學系

組別:土木系丁組一般生

第2頁,共≥頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

(5%)

- 5. Verify that the area of a sphere with radius a is $4\pi a^2$. (10%)
- 6. Let f(x,y)=3 be the density of mass in the region R: $0 \ll y \ll \sqrt{1-x^2}$, $0 \ll x \ll 1$. Find the center of gravity and the moment of inertia I_x , I_y , I_0 . (20%)
- 7. Find the eigenvalues and eigenvectors of:

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} (10\%)$$

8. Find the Fourier transform of e^{-ax^2} , where a > 0. (10%)