系所班組別:資訊工程學系

考試科目(代碼):基礎計算機科學(2301)

共 4 頁,第 1 頁 *請在【答案卷、卡】作答

1. (12%)

- (a) (6%) How many integer solutions of $x + y + z \le 15$ satisfy $x \ge 0$, $y \ge 3$, $z \ge 5$?
- (b) (6%) In how many ways can we select three distinct integers from 1 to 29 such that their sum is a multiple of 3?

2. (8%) A tree T has 2n vertices of degree 1, 3n vertices of degree 2, and n vertices of degree 3.

- (a) (6%) Determine the value of n.
- (b) (2%) What is the minimum number of edges that can be added to T so that the resultant graph will have an Euler circuit?
- (10%) Given a k ∈ Z⁺, the number of derangements d_k is defined as the number of arrangements of 1, 2, ..., k where none of the numbers 1, 2, ..., k are in their natural positions. Take k = 4 as an example, 4, 3, 2, 1 is considered as one of the derangements. We define d₀ = 1 for convenience.

For all $n \in \mathbb{Z}^+$, use combinatorial arguments to prove the following equation $n! = \binom{n}{0} d_0 + \binom{n}{1} d_1 + \binom{n}{2} d_2 + \dots + \binom{n}{n} d_n = \sum_{k=0}^n \binom{n}{k} d_k.$

Remarks: No marks will be given if your proof is not a combinatorial one.

- 4. (10%) On the set Z, define relation \mathcal{R} by $a\mathcal{R}b$ if a-b is a nonnegative even integer.
 - (a) (5%) Prove or disprove that \mathcal{R} is a partial order on \mathbb{Z} .
 - (b) (5%) Prove or disprove that \mathcal{R} is a total order on \mathbb{Z} .

Remark: No marks will be given if you do not show your work.

系所班組別:資訊工程學系

考試科目(代碼):基礎計算機科學(2301)

共 4 頁,第 2 頁 *請在【答案卷、卡】作答

5. (6%) Please answer whether each of the following statements is correct.

- (a) (1%) $\log n$ is in $O(n^{0.1})$.
- (b) (1%) $n! + n^n$ is in $\Theta(n^n)$.
- (c) (1%) $2^n + n^n$ is in $\Theta(2^n)$.
- (d) (1%) n! is in $\Omega(2^n)$.
- (e) (1%) 2^n is in O(n¹⁰⁰).
- (f) (1%) n log n is in $\Omega(n^2)$.

6. (6%)

(a) (3%) Please draw the graph with the following sequential representation.

[0] 5 [1] 7 [2] 10	[4] 15	[8] 2	[12] 3
	[5] 1 [6] 2	[9] 3 [10] 0	[13] 1 [14] 2

(b) (3%) Please draw the graph with the following representation of adjacency multilists.

系所班組別:資訊工程學系

考試科目 (代碼):基礎計算機科學(2301)

共 4 頁,第 3 頁 *請在【答案卷、卡】作答

7. (18%)

 (a) (3%) Please draw the min heap (shown as follows) following a delete min.

(b) (3%) Please draw the min-max heap (shown as follows) following a delete min.

(c) (3%) Please draw the deap (shown as follows) following a delete min.

系所班組別:資訊工程學系

考試科目(代碼):基礎計算機科學(2301)

共_4_頁,第_4_頁 *請在【答案卷、卡】作答

(d) (3%) Please draw the min leftist tree (shown as follows) following a delete min.

(e) (3%) Please draw the 2-3-4 tree (shown as follows) following the deletion of 15.

(f) (3%) Please draw the red-black representation of 2-3-4 tree shown in (e).

- 8. (30%) For an input connected undirected graph G,
 - \bullet the HP problem asks if G contains a Hamiltonian path; and
 - the HC problem asks if G contains a Hamiltonian circuit.
 - (a) (5%) Describe a polynomial-time reduction from HP to HC, and
 - (10%) explain why such a reduction works.
 - (b) (5%) Describe a polynomial-time reduction from HC to HP, and
 - (10%) explain why such a reduction works.

Remark: No marks may be given if the reduction does not work, or the explanation is incomplete.