國立清華大學 107 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):線性代數(0102)

共_2_頁,第_1_頁 *請在【答案卷、卡】作答

[8%] Let W be (real) space of all 2 × 2 complex Hermitian matrices, i.e., the space of all 2 × 2 complex matrices A such that A^t = A where A^t denotes the transpose of A, and [a_{i,j}] = [a_{i,j}]. Show that the mapping

$$(a, b, c, d) \mapsto \begin{bmatrix} a+d & b+ci \\ b-ci & a-d \end{bmatrix}$$

is a vector space isomorphism from \mathbb{R}^4 onto W where $i = \sqrt{-1}$.

2. [8%] Find the value of k that satisfies the equation:

	$b_1 + c_1$	$b_2 + c_2$	$b_3 + c_3$		a_1	a_2	a_3	
det	$a_1 + c_1$	$a_2 + c_2$	$a_3 + c_3$	$= k \det$	b_1	b_2	b_3	
	$a_1 + b_1$	$a_2 + b_2$	$a_3 + b_3$		c_1	C2	C3	

3. [8%] Find the rank of the matrix

$$A = \begin{bmatrix} 0 & 2 & 4 & 2 & 2 \\ 4 & 4 & 4 & 8 & 0 \\ 8 & 2 & 0 & 10 & 2 \\ 6 & 3 & 2 & 9 & 1 \end{bmatrix}$$

4. [8%] Find the minimal polynomial of the matrix

$$A = \begin{bmatrix} 0 & 4 & 2 \\ -1 & -4 & -1 \\ 0 & 0 & -2 \end{bmatrix}.$$

5. [10%] Consider the vectors

$$\mathbf{v}_1 = (3, 0, 4)$$

 $\mathbf{v}_2 = (-1, 0, 7)$
 $\mathbf{v}_3 = (2, 9, 11)$

in \mathbb{R}^3 equipped with the standard inner product. Find an orthonormal basis $\{w_1, w_2, w_3\}$ of \mathbb{R}^3 such that

$$\begin{split} & \text{Span}\{\mathbf{w}_1\} = \text{Span}\{\mathbf{v}_1\}; \\ & \text{Span}\{\mathbf{w}_1, \mathbf{w}_2\} = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}; \\ & \text{Span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\} = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}. \end{split}$$

國立清華大學 107 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):線性代數(0102)

共_2_頁,第__2_頁 *請在【答案卷、卡】作答

- 6. [10%] A complex $n \times n$ matrix X is called *nilpotent* if $X^m = 0$ for some positive integer m. Let A be a nilpotent $n \times n$ complex matrix. Show that $Tr(A^r) = 0$ for all positive integer r.
- 7. [16%] Let (V, ⟨, ⟩) be a 4-dimensional real inner product space with an orthonormal basis {v₁, v₂, v₃, v₄}. Let W be a 3-dimensional subspace spanned by an orthonormal set {w₁, w₂, w₃} (i.e., ⟨w_i, w_j⟩ = δ_{i,j} for any i, j). Let π: V → W be the orthogonal projection. It is known that

$$\pi(\mathbf{v}_1) = c(\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{w}_3);$$

$$\pi(\mathbf{v}_2) = c(\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3);$$

$$\pi(\mathbf{v}_3) = c(-\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3);$$

$$\pi(\mathbf{v}_4) = c(-\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{w}_3)$$

for some positive constant c.

(1) Find the kernel of π .

(2) Find c.

- 8. [16%] Let A be a symmetric $n \times n$ real matrix. Show that the following two conditions are equivalent:
 - (1) All eigenvalues of A are positive.
 - (2) $\mathbf{x}^{t} A \mathbf{x} > 0$ for all $n \times 1$ real column vectors \mathbf{x} .
- 9. [16%] Let V be a finite-dimensional vector space over a field F, and let V* denote the dual space of V. For $v \in V$, define $\xi_v \in (V^*)^*$ by $\xi_v(f) = f(v)$ where $f \in V^*$.
 - (1) Show that the map $\Xi: V \to (V^*)^*$ given by $v \mapsto \xi_v$ is a vector space isomorphism.
 - (2) For a subspace W of V, define $W^{\perp} = \{ f \in V^* \mid f(w) = 0 \text{ for all } w \in W \}$. Show that $(W^{\perp})^{\perp} = \Xi(W)$ where Ξ is given in (1).