題號: 62 國立臺灣大學 107 學年度碩士班招生考試試題 科目:有機化學(A)

節次: 7

共 年 頁之第 / 頁

注意:本試題包含單選題及問答題兩部份	
--------------------	--

Part I. 單選題 (25題,共50分) ※ 注意:請於試卷內之「選擇題作答區」依序作答。

	the lowest energy ed by hydrogen atom		onformatio	n of <i>cis</i>	-1,3-dimeth	ylcyc	lohexa	ane, ho	w ma	ny ax	kial posit	ions	are
(A) 2	(B) 3	٠	(C)	4	(D) 5			(E)	6				
	/hat reactive specinethylpropane?	es is	produced	in the	initiation						chlorina	tion	of
• •	chlorine atom carbocation		(B) a chlorine radical anion (C) a carbon radical (E) none of the above										
 3. Which of the statements below correctly describes an achiral molecule? (A) The molecule has a nonsuperimposable mirror image. (B) The molecule exhibits optical activity when it interacts with plane-polarized light. (C) The molecule has an enantiomer. (D) The molecule might be a meso form. (E) None of the above. 													
(A) 1-	Which of the followin iodohexane fluorohexane	g alkyl		o-1-metl	nylcyclohex						hot meth	anol	?
5. Which of the alkyl chlorides listed below undergoes dehydrohalogenation in the presence of a strong base to give 2-pentene as the only alkene product?													
(A) 1-	chloropentane chloro-2-methylbuta		(B) 2-chl	oropenta	ine ethylbutane	-	(C) 3	3-chloro	penta	ne			
(A) cy	Which of the following cloheptatrienyl cation of the following cation of the f	n		heptatri	enyl anion		(C) (cyclope	ntadie	enyl c	ation		
(A) th	The hydrolysis of este te Fischer esterification te Hunsdiecker reacti	on.	(B) trans	esterific	ation. nn condensa	tion.	(C) s	saponifi	cation	1.			
(A) es (C) h	S)-2-Methylbutanal sterifies ydrolyzes		upon sit	(E	n acidic or a) racemizes) inverts co						on		
(E) ir	reversibly forms the	nydrate											

題號:	62 國立臺灣 有機化學(A)	大學 107 學年度碩士	_
行口· 節次:		·	共 4 頁2
	9. In biological systems, sulfo	onium salts such as SAM serve wha	at function?
	(A) esterifying agents	(B) epoxidizing agents	(C) alkylating agents
	(D) nucleophilic agents	(E) reducing agents	
	10. By what mechanism does of	cyclohexanol react when treated in	sulfuric acid and what compound results?
	(A) E1; methoxycyclohexane	(B) E2; methoxycyclohexane	
	(D) E1; cyclohexene	(E) E2; cyclohexene	
	11. When (R)-butan-2-ol is tre	ated with TsCl in pyridine, the proc	luct formed is:
	(A) a single enantiomer.	(B) a racemic mixture.	(C) a mixture of diastereomers.
	(D) an achial compound.	(E) none of the above	
	12. HBr can be added to an a serve in this reaction?	alkene in the presence of peroxide	s (ROOR). What function does the peroxide
	(A) nucleophile	(B) electrophile	(C) radical chain initiator
	(D) acid catalyst	(E) solvent	
	 Reaction of ethylmagnesiu after quenching with aqueous a 		wing compounds yields a secondary alcohol
	(A) H ₂ CO	(B) CH ₃ CHO	(C) (CH ₃) ₂ CO
	(D) ethylene oxide	(E) <i>n</i> -butyllithium	
	14. What is the p K_a of a terminal	nal alkyne?	
	(A) 4 (B) 10	(C) 16 (D) 25	(E) 44
	15. Addition of Br ₂ to (E)-hex	-3-ene produces	
	(A) (Z)-3,4-dibromo-3-hexene		
	(B) (E)-3,4-dibromo-3-hexene		
		libromides which is optically active	•
	(D) a mixture of enantiomeric of	libromides which is optically inacti	ive
	(E) a meso dibromide		
	16. Consider the equilibrium	of each of the carbonyl compound	s with HCN to produce cyanohydrins. Which
		unds in order of increasing K_{eq} for	
		CH ₃ CHO < 2-methylcyclohexanone	
	-	nexanone < cyclohexanone < H ₂ CC	
	(C) 2-methylcyclohexanone < 0	cyclohexanone < CH ₃ CHO < H ₂ CO)
	(D) evelobeyanone < 2-methyle	evelohexanone < H ₂ CO < CH ₂ CHO)

國立臺灣大學 107 學年度碩士班招生考試試題

(E) cyclohexanone < 2-methylcyclohexanone < CH₃CHO < H₂CO

題號: 62 國立臺灣大學 107 學年度碩士班招生考試試題 科目:有機化學(A) 節次: 7

題號: 62 共 4 頁之第 3 頁

17. What is the major organic parts of N-bromosuccinimide?	product which results v	vhen cyclohepter	ne is irradiated in the presence of						
(A) 4-bromocycloheptene (B) 3-bromocycloheptene (C) 2-bromocycloheptene (D) 1-bromocycloheptene (E) 1,2-dibromocycloheptane									
(D) 1-bromocyclonepiene	(L) 1,2 dioxomocy close	pune							
18. Which pair of reagents would produce the highest yield of (R)-2-ethoxybutane?									
(A) sodium (R)-2-butoxide + iodoethane (B) sodium (S)-2-butoxide + iodoethane									
(C) sodium ethoxide + (R)-2-iodob(E) Both B and D would work equ	• •	um ethoxide + (S)-2-iodobutane						
19. Which of the following is the strongest activating group in electrophilic aromatic substitution reactions?									
(A) $-N(CH_3)_2$ (B) $-CO_2CH_3$	(C) -NO ₂	(D) -CH ₂ CH ₃	(E) -OCH ₃						
20. The reagent which converts a	20. The reagent which converts a carbonyl group of a ketone into a methylene group is								
(A) Na, NH ₃ , EtOH	(B) LiAlH ₄	(C) 1	NaBH ₄ , EtOH						
(D) Zn(Hg), conc. HCl (E) LiAlH[OC(CH ₃) ₃] ₃									
21. Which of the following are st	21. Which of the following are strongly hydrogen bonded in the liquid phase?								
(A) nitriles	(B) esters	(C) s	(C) secondary amides						
(D) tertiary amides	D) tertiary amides (E) acid chlorides								
22. When CH ₃ CH ₂ CHO reacts w	ith PhNHNH ₂ under con-	ditions of acid ca	stalysis, the major organic product is						
(A) a ketone (B) a nitrile	(C) an imine	(D) an oxime	(E) a hydrazone						
23. What is the carbon nucleophi ketone?	le which attacks molecul	lar bromine in th	e acid-catalyzed α-bromination of a						
(A) an enolate	(B) a Grignard reagent	(C) a	n acetylide						
(D) a carbocation	(E) an enol								
24. What compound is produced when $(CH_3)_2CHCH_2Br$ is subjected to the following sequence of steps? (i) Mg, Et ₂ O; (ii) CO ₂ .									
(A) 2-methylpropanoic acid	(B) 3-methylpropanoic	acid (C) 2	(C) 2-methylbutanoic acid						
(D) 3-methylbutanoic acid	(E) 2-methylhexanoic a	cid							
25. Which of the following will re	eact most slowly with an	enamine?							
(A) isopropyl chloride	cetyl chloride								
(D) benzyl chloride	(E) allyl bromide								

題號: 62

國立臺灣大學 107 學年度碩士班招生考試試題

科目:有機化學(A)

公子 7

共 4 頁之第 4 頁

Part II. 問答題 (3題,共50分) ※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。

1. Give the major organic product for each of the following reactions. (24 points)

2. Give a detailed reaction mechanism for the following reactions. (14 points)

(a)
$$H_2O$$
 H_2SO_4

(b) O
 CH_3
 $ii)$ H_3O^+
 O

3. Show how to synthesize each of the following compounds from the designated starting materials. More than one step is needed and you may use any other required reagents. (12 points)

試題隨卷繳回