國立政治大學 107 學年度 碩士班招生考試試題

第1頁/共1頁

考試科目 線性代數 系別 應用數學系 考試時間 2月3日(星期六) 第二節

注意事項:

- 作答時,請於答案卷上標明題號,並請勿任意更改題目符號,且請詳列過程,只有答案不給分。 請盡量清楚完整回答你會的問題,不要只是每題回答一小部份。
- 本試題共有 5 個問題,總計 100 分。
- 1. We say that a linear operator T on V is a **projection**, if there are two subspaces W_1, W_2 of V and $V = W_1 \oplus W_2$, such that for all $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ with $\mathbf{x}_1 \in W_1$, $\mathbf{x}_2 \in W_2$, we have $T(\mathbf{x}) = \mathbf{x}_1$. In this case, we called that T is the **projection on** W_1 along W_2 .
 - (a) (10 %) Let $T: V \to V$ be a projection. Show that $T^2 = T$.
 - (b) (10 %) Let W be a subspace of a finite dimensional vector space of V. Show that $V = W \oplus W^{\perp}$. Define the projection T on W along W^{\perp} .
 - (c) (10 %) Let W_1, W_2 be subspaces of \mathbb{R}^3 , where $W_1 = \text{span}\{(1,0,0),(1,0,1)\}$ and $W_2 = \text{span}\{(1,1,1)\}$. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection on W_1 along W_2 . Let β be the standard ordered basis for \mathbb{R}^3 . Find the matrix representation $[T]_{\beta}$ for T.
- 2. Let V be a vector space over \mathbb{F} . Let

$$V^* = \{ f \colon V \to \mathbb{F} \mid f \text{ is a linear transformation.} \}$$

Note that V^* is also a vector space. For a subset $S \subset V$, the annihilator S° of S is defined by

$$S^{\circ} = \{ f \in V^* \mid f(\mathbf{x}) = \mathbf{0} \text{ for all } \mathbf{x} \in S \}.$$

- (a) (10 %) Show that S° is a subspace of V^{*} .
- (b) (10%) Let W be a subspace of a finite dimensional vector space of V. Show that

$$\dim W + \dim W^{\circ} = \dim V.$$

- 3. (10 %) Let $T: V \to V$ be a linear operator on a finite dimensional vector space V. Let β, γ be two bases of V. Show that $\det([T]_{\beta}) = \det([T]_{\gamma})$.
- 4. (20%) Let A be a real $n \times n$ matrix. Show that A is invertible if and only if 0 is an eigenvalue of A.
- 5. (20%) A real $n \times n$ matrix A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for each nonzero vector $\mathbf{x} \in \mathbb{R}^n$. Let A be an $n \times n$ positive definite matrix. For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, define $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^T A \mathbf{x}$. Show that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n .