題號: 235

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(F)

節次: 6

超號: 235 共 / 頁之第 / 頁

(1) (20%) Find the solution of the equation x(x-1)y'' + (3x-1)y' + y = 0

(2) (20%) Find the steady-state temperature distribution $u(r,\theta)$ in the semicircular plate shown in following figure.

(3) (20%) Evaluate $\int_{0}^{2\pi} \frac{1}{\sqrt{3 - \cos \theta}} d\theta$

(4) (20%) Find the Fourier integral of Delta function $\delta(t-a)$, and then using the result to evaluate the Fourier transform of $A\cos \lambda t$. a and λ are constants.

$$\left[\text{hint: } F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt, \quad f(t) = \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega \right]$$

(5) (10%) Find the least square ("best") solution of the following system:

$$x_1 + 2x_2 = 2$$

$$3x_1 + 2x_2 = 5$$

$$x_1 + 3x_2 = 1$$

$$4x_1 + x_2 = 4$$

(6)(10%)Suppose $f_1(x)$, $f_2(x)$, $f_3(x)$, $\cdots f_n(x)$ possess at least n-1 derivatives. Prove that if the functions $f_1(x)$, $f_2(x)$, $f_3(x)$, $\cdots f_n(x)$ are linearly independent on the defined interval, the Wronskian must not be zero, i.e., $W(f_1, f_2, f_3, \cdots f_n) \neq 0$.