題號: 212 國立臺灣大學101學年度碩士班招生考試試題

頁之第 /

科目:材料力學(B)

節次: 8

1.(25%) A circular bar (rod/shaft) has length L=20 m and cross-sectional radius R=1m. The bar is fixed at the left end x = 0, but free to twist while restrained to elongate at the right end x = 20 m. (In other words, the support conditions are fixed-free as a torsional shaft but fixed-fixed as an axial rod.) The bar is simultaneously subjected to a tensile axial load P = 62.8 kN and a positive torsional load T = 31.4 kN-m, both applied at x = 10m through its cross-sectional centroid. The material is isotropically linearly elastic with Young's modulus E = 2.6 GPa and shear modulus G = 1 GPa.

(a) Draw the axial force diagram and the torsional moment diagram.

(b) Determine the normal and shear stresses and their distributions on the cross section near the left end x = 0.

(c) Compute Poisson's ratio; explain its meaning.

(d) Find the maximum principal strain and the absolute maximum shear strain among those in all locations and inclined planes in the bar.

2.(30%) Suppose a (prismatic, slender) beam is under bending deformation.

(a) Derive the relation between the bending curvature κ and the normal strain ϵ .

(b) Derive the formula for computing the normal stress σ if the moment M is known.

(c) Derive the formula for computing the shear stress τ if the shear force V is known. (You are encouraged to outline the assumptions made in the derivations and accompany your derivations with due explanations of the quantities, symbols, and/or figures you just used in the derivations and formulae.)

3.(10%) What is the centroid of a cross section? (Please provide one or more examples for illustrations.) How different would it make whether a longitudinal force were applied through the centroid or not?

4.(10%) What is the shear center of a cross section? (Please provide one or more examples for illustrations.) How different would it make whether a transverse force were applied through the shear center or not?

5.(25%) A column with flexural rigidity EI is subjected to a compressive load P acting at the upper end x = L. Whenever the load P is at a certain value denoted P_{cr} the column will deflect without limit, i.e. buckle, even under a slight disturbance. To describe and model this phenomenon the buckling equation and boundary conditions may be formulated as in the following boundary value problem (BVP):

$$EIw''(x) + Pw(x) = P\delta, \quad 0 < x < L,$$

 $w(0) = 0, \quad w'(0) = 0, \quad w(L) = \delta.$

- (a) What type of support (fixed, pinned, or free) is it at the bottom end x = 0?
- (b) What type of support is it at the upper end x = L?

(c) Solve the BVP for the buckling load P_{cr}.

(d) Solve the BVP for the buckled mode shape w(x).

(e) What is δ ? How large is it when $P = P_{cr}$?

(f) If $P < P_{cr}$, what are the values of δ and w(x)?

試題隨卷繳回