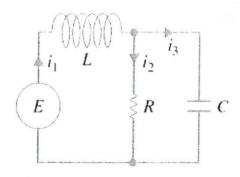
國立臺灣師範大學 107 學年度碩士班招生考試試題

科目:工程數學 適用系所:電機工程學系

注意:1.本試題共 1 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1.(10 分) Find the general solution of this homogeneous differential equation (1+x) dy-ydx=0

2.(10 分) Find the general solution of this homogeneous differential equation y "-6y'+9=0


 $3.(20 \, \hat{n})$ Newton's law of cooling describes that the heat loss rate of a body is proportional to the temperature difference between the body and the environment. Define T(t) as the temperature of a body with respect to the time, R as the environment temperature, and k as the constant of heat loss. Please express the Netwon's law of cooling, and solve this differential equation.

4.(20 分)Prove the following Laplace transforms:

a.
$$L\{e^{at}\} = \frac{1}{s-a}$$

b.
$$L\{f''(t)\} = s^2 L\{f'(t)\} - sf(0) - f'(0)$$

5. (15 \Re) For $E(t) = 60 \ V$, L = 1h, $R = 50 \Omega$ $C = 10^{-4} f$, $i_1(0) = i_2(0) = 0$. Please solve $i_1(t)$ and $i_2(t)$ of the following circuits by using Laplace transform.

6. (15 $\stackrel{.}{\mathcal{H}}$) For an $n \times n$ matrix A has a basis of eigenvectors \mathbf{x}_i , $i = 1, \ldots, n$, prove that $D = X^{-1}AX$, where D is a diagonal matrix with eigenvalues of A on the diagonal line.

7. (10 分) Compute the inverse of the matrix

$$\left[
\begin{array}{ccc}
-4 & 0 & 0 \\
0 & 8 & 13 \\
0 & 3 & 5
\end{array}
\right]$$