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1. (6%) List all the permutations for the letters a, c,t.
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. (10%) Letn € Z*, and n > 14, prove that » can be written as a sum of 3°s and/or §'s.
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. (8%) Let f. g: Z~ — Z" where forallxe Z+ Sx)=x+1and g(x) = max{l,x- 1.

Mw

‘U‘

Il

the maximum of 1 and x— 1.

(a) (1%) Is /'an onto function?

(b) (1%) Is the function f one-to-one?
(¢) (1%) Is g an onto function?

(d) (1%) Is the function g one-to-one?

() (2%) Determine (f - g)(x) for==L and 7.

() (2%) Determine (g = f)(x) for%]i and 7.

5. (10%) Find the general solution for the recurrence relation

ant3—3ar2+ 3ap1 —an=3+5n,n=0
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6. (10%) Prove that for every grou ; € Gand ab = ac, then b = ¢.
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7. (15%) Let vi= (0, 1, 0), v2= (-4/5, 0, 3/5), and vs = (3/5, 0, 4/5).
(a) (7%) Show that S = {v, v, v3} is an orthonormal basis for R® with the

Euclidean inner product.

(b) (8%) Express the vector = (1, 1, 1) as a linear combination of the vectors in S,

and find the coordinate vector (#)s. —
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8. (5%) Find vectors x any y in R? that are orthonormal with respect to the inner
product <u, v> = 3uvi+2uovo, where u = (uj, uz) and v = (v;, v2), but are not

orthonormal with respect to the Euclidean inner product.

9. (8%) Find the dimension and a basisForthe null space of A, where

F 1] 11 =4
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10. (7%) Prove that if 4 is a matrix with # columns, then rank(4)+nullity(4) = n.

11. (15%) Let T: R?— R? be the linearloperator given by T[BU =L b 1
o ]

(a) (4%) Find the standard matrix 4 for 7.
(b) (6%) Find a basis for R?relative to which the matrix for T is diagonal.

(¢) (5%) Find A'. e




