國立臺灣科技大學 107 學年度碩士班招生試題

系所組別:機械工程系碩士班甲組、乙組、丙組、丁組

科 目:工程數學

(總分為 100 分)

- 1. (20%) Given an ODE: $y''' + 3y'' + 3y' + y = 30e^{-x}$,
 - (a) Find the homogeneous solution.

(10%)

(b) Find the particular solution.

(10%)

2. (20%) Solve the following ODE by using the Laplace transform,

$$y'' + 2y' + y = 3te^{-t}, y(0) = 4,$$

y'(0) = 2.

- 3. (20%) Given an ODE: y'' + 15y' + 50y = 0. Convert it into a system of the form: y' = Ay,
 - (a) Find the matrix A.

- (b) Find the eigenvalues and the corresponding eigenvectors of A. (8%)
- (c) Find the general solution to the system y' = Ay.

- 4. (20%) Let $\vec{F}(x,y,z)=(-2y,-x+y,0)$ be a force field in 3D space and $C:x^{1/2}+y^{1/2}=1, z=0, 0\leq x\leq 1$ be a curve on the x-y plane.
 - (a) Determine if the force field $\vec{F}(x,y,z)$ is conservative or not conser-
 - (b) Calculate the work done by the force field \vec{F} along the curve C directly, i.e., $\int_C \vec{F} \cdot d\vec{R}$.
 - (c) Verify the result you just obtained by applying the Stokes' theorem. Note that C is NOT a closed curve. (8%)
- 5. (20%) Consider the following 2nd order partial differential equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad 0 < x < \pi, 0 < y < \pi,$$

subjected to the following boundary conditions:

$$\frac{\partial u}{\partial x}(0,y) = 0, \quad 0 \le y \le \pi$$

$$\frac{\partial u}{\partial x}(\pi,y) = 0, \quad 0 \le y \le \pi$$

$$\frac{\partial u}{\partial y}(x,\pi) = 0, \quad 0 \le x \le \pi$$

$$\frac{\partial u}{\partial y}(x,0) = \cos x, \quad 0 \le x \le \pi$$

$$\frac{\partial u}{\partial x}(\pi, y) = 0, \quad 0 \le y \le \pi$$

$$\frac{\partial u}{\partial y}(x,\pi) = 0, \quad 0 \le x \le \pi$$

$$\frac{\partial u}{\partial y}(x,0) = \cos x, \qquad 0 \le x \le \tau$$

- (a) Determine if this is a Dirichlet type, Neumann type, or Robin type boundary value problem?
- (b) Solve this boundary value problem by the method of separation of variables in details.
- (c) How will the solution become if the $\cos x$ in the 4th boundary condition (6%)is changed to $\sin x$?

