國立臺灣科技大學 107 學年度碩士班招生試題

系所組別:自動化及控制研究所碩士班

科 目:工程數學

(總分為 100 分)

1. (a) Use Laplace transform to solve the initial value problem as follows:

$$\begin{cases} x' + 2y' - x = 0, \\ 4x' + 3y' + y = -6, \quad x(0) = y(0) = 0. \end{cases}$$

(5%)

(b) Laplace transform: $L\{f(t)\} = F(s)$ and $L\{g(t)\} = G(s)$. Prove the convolution theorem $L\{f(t) * g(t)\} = F(s) \cdot G(s)$.

(5%)

- 2. A function f is called *analytic* at x_0 if f(x) has a power series representation in some interval $(x_0 h, x_0 + h)$ about x_0 . Find a power series solution of y'' xy' + y = 3 expanded about $x_0 = 0$, and use it to generate the first five non-zero terms. (10%)
- 3. Find the solutions of the following differential equations.

(a)
$$y'' + 4y' = 8 + 34\cos(x), y(0) = 3, y'(0) = 2.$$
 (8%)

(b)
$$2y^2 + ye^{xy} + (4xy + xe^{xy} + 2y)y' = 0.$$
 (7%)

- 4. Apply the matrix operation ($\mathbf{A}\mathbf{x}=\mathbf{B}$) to calculate the least squares line y=ax+b for the following data $(x_i, y_i)=(-3,-23), (0,-8.2), (1,-4.6), (2,-0.5), (4, 7.3), (7, 19.2)$ (15%)
- 5. Consider the following two vectors **F** and **G**.

$$F = -3i + 6j + k$$
, $G = -i - 2j + k$

- (a) Compute **F**•**G** and the angle in degrees between those two vectors. (5%)
- (b) Compute $F \times G$, $G \times F$ and verify the anticommutativity of the cross product.

(5%)

國立臺灣科技大學 107 學年度碩士班招生試題

系所組別:自動化及控制研究所碩士班

科 目:工程數學

(總分為 100 分)

- 6. Consider a 3x3 matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & -2 & -8 \\ 0 & -5 & 1 \end{bmatrix}$
 - (a) Find the eigenvalues and the corresponding eigenvectors. (6%)
 - (b) Sketch the Gershgorin circles (center and radius) and locate the eigenvalues as points in the plane. (4%)
- 7. Let f(x) be defined on [-L, L], the Fourier series of f(x) is expressed as

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\pi x/L) + b_n \sin(n\pi x/L)]$$

Solve a_0 , a_n and b_n .

(10%)

8. Let H(t) be the Heaviside function, defined by

$$H(t) = \begin{cases} 1 & \text{for } t \ge 0 \\ 0 & \text{for } t < 0. \end{cases}$$

Calculate the Fourier transform of $f(t) = H(t)e^{-5t}$.

(10%)

9. (a) Let
$$z = 1 + i$$
, solve r and θ for its polar form $z = re^{i\theta}$. (5%)

(b) Evaluate
$$\int_{\gamma} f(z) dz$$
 for $f(z) = |z|^2$; γ is the line segment from $-i$ to 1. (5%)

